Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing
Kybernetika, Tome 43 (2007) no. 6, pp. 777-788 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient in normal direction. Moreover, the proofs of $L^2(\Omega )$ – a priori estimates for our discrete solution are given. Finally we present our computational results.
This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient in normal direction. Moreover, the proofs of $L^2(\Omega )$ – a priori estimates for our discrete solution are given. Finally we present our computational results.
Classification : 35B45, 35K57, 35K60, 65M60, 68U10, 74S10, 94A08
Keywords: finite volume method; diamond-cell method; image processing; nonlinear parabolic equation; tensor diffusion
@article{KYB_2007_43_6_a2,
     author = {Drbl{\'\i}kov\'a, Olga},
     title = {Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing},
     journal = {Kybernetika},
     pages = {777--788},
     year = {2007},
     volume = {43},
     number = {6},
     mrnumber = {2388392},
     zbl = {1140.35362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a2/}
}
TY  - JOUR
AU  - Drblíková, Olga
TI  - Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing
JO  - Kybernetika
PY  - 2007
SP  - 777
EP  - 788
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a2/
LA  - en
ID  - KYB_2007_43_6_a2
ER  - 
%0 Journal Article
%A Drblíková, Olga
%T Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing
%J Kybernetika
%D 2007
%P 777-788
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a2/
%G en
%F KYB_2007_43_6_a2
Drblíková, Olga. Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing. Kybernetika, Tome 43 (2007) no. 6, pp. 777-788. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a2/

[1] Catté F., Lions P. L., Morel J. M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 129 (1991), 182–193 | MR

[2] Coirier W. J.: An a Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. PhD Thesis, Michigan Univ. NASA Lewis Research Center, 1994

[3] Coirier W. J., Powell K. G.: A cartesian, cell-based approach for adaptive-refined solutions of the Euler and Navier–Stokes equations. AIAA 1995

[4] Coudiere Y., Vila J. P., Villedieu P.: Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. M2AN Math. Model. Numer. Anal. 33 (1999), 493–516 | DOI | MR | Zbl

[6] Eymard R., Gallouët, T., Herbin R.: Finite Volume Methods. In: Handbook for Numerical Analysis, Vol. 7 (Ph. Ciarlet, J. L. Lions, eds.), Elsevier, Amsterdam 2000 | MR | Zbl

[7] Guichard F., Morel J. M.: Image Analysis and P. D.E.s. IPAM GBM Tutorials, 2001

[8] Handlovičová A., Mikula, K., Sgallari F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695 | DOI | MR | Zbl

[9] Mikula K., Ramarosy N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590 | DOI | MR | Zbl

[10] Weickert J.: Coherence-enhancing diffusion filtering. Internat. J. Comput. Vision 31 (1999), 111–127 | DOI

[11] Weickert J., Scharr H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Visual Comm. and Image Repres. 13 (2002), 1–2, 103–118 | DOI