Keywords: essentially admissible polygon; crystalline curvature; the Wulff shape; isoperimetric inequality
@article{KYB_2007_43_6_a13,
author = {Yazaki, Shigetoshi},
title = {Asymptotic behavior of solutions to an area-preserving motion by crystalline curvature},
journal = {Kybernetika},
pages = {903--912},
year = {2007},
volume = {43},
number = {6},
mrnumber = {2388403},
zbl = {1139.53032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a13/}
}
Yazaki, Shigetoshi. Asymptotic behavior of solutions to an area-preserving motion by crystalline curvature. Kybernetika, Tome 43 (2007) no. 6, pp. 903-912. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a13/
[1] Almgren F., Taylor J. E.: Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differential Geom. 42 (1995), 1–22 | MR | Zbl
[2] Angenent S., Gurtin M. E.: Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391 | DOI | MR
[3] Gage M.: On an area-preserving evolution equations for plane curves. Contemp. Math. 51 (1986), 51–62 | DOI | MR
[4] Giga Y.: Anisotropic curvature effects in interface dynamics. Sūgaku 52 (2000), 113–127; English transl., Sūgaku Expositions 16 (2003), 135–152
[5] Gurtin M. E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford 1993 | MR | Zbl
[6] Hontani H., Giga M.-H., Giga, Y., Deguchi K.: Expanding selfsimilar solutions of a crystalline flow with applications to contour figure analysis. Discrete Appl. Math. 147 (2005), 265–285 | DOI | MR | Zbl
[7] Roberts S.: A line element algorithm for curve flow problems in the plane. CMA Research Report 58 (1989); J. Austral. Math. Soc. Ser. B 35 (1993), 244–261 | MR
[8] Taylor J. E.: Constructions and conjectures in crystalline nondifferential geometry. In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), 321–336, Pitman London | MR | Zbl
[9] Taylor J. E.: Motion of curves by crystalline curvature, including triple junctions and boundary points. Diff. Geom.: partial diff. eqs. on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, 417–438, AMS, Providence | MR
[10] Taylor J. E., Cahn, J., Handwerker C.: Geometric models of crystal growth. Acta Metall. 40 (1992), 1443–1474 | DOI
[11] Yazaki S.: On an area-preserving crystalline motion. Calc. Var. 14 (2002), 85–105 | DOI | MR | Zbl
[12] Yazaki S.: On an anisotropic area-preserving crystalline motion and motion of nonadmissible polygons by crystalline curvature. Sūrikaisekikenkyūsho Kōkyūroku 1356 (2004), 44–58
[13] Yazaki S.: Motion of nonadmissible convex polygons by crystalline curvature. Publ. Res. Inst. Math. Sci. 43 (2007), 155–170 | DOI | MR | Zbl