Keywords: turbulence; heat transfer; combustion; NOx
@article{KYB_2007_43_6_a11,
author = {Straka, Robert and Makovi\v{c}ka, Jind\v{r}ich},
title = {Model of pulverized coal combustion in a furnace},
journal = {Kybernetika},
pages = {879--891},
year = {2007},
volume = {43},
number = {6},
mrnumber = {2388401},
zbl = {1137.80317},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a11/}
}
Straka, Robert; Makovička, Jindřich. Model of pulverized coal combustion in a furnace. Kybernetika, Tome 43 (2007) no. 6, pp. 879-891. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a11/
[1] Beneš M., Havlena V.: Continuum Approach to the Steam Flow in a Model of Boiler. Technical Report No.1-99, Pr. 4004/99, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 1999
[2] Bowman C. T., Seery D. J.: Emissions from Continuous Combustion Systems. Plenum Press, New York 1972
[3] Guo Y. C., Chan C. K.: A multi-fluid model for simulating turbulent gas-particle flow and pulverized coal combustion. Fuel 79 (2000), 1467–1476 | DOI
[4] Kim C., Lior N.: A numerical analysis of NOx formation and control in radiatively/conductively-stabilized pulverized coal combustors. Chem. Engrg. J. 71 (1998), 221–231 | DOI
[5] Levy J. M., Chen L. K., Sarofim A. F., Beer J. M.: NO/Char reactions at pulverized coal flame conditions. In: 18th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh 1981
[6] Liou M.-S., Steffen C. J.: A new flux splitting scheme. J. Comput. Phys. 107 (1993), 23–29 | DOI | MR | Zbl
[7] Lockwood F. C., Romo-Millares C. A.: The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace: Measurements and modeling. J. Inst. Energy 93 (1992), 144–152
[8] Makovička J., Havlena V.: Finite volume numerical model of coal combustion. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2004 (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Praha 2005, pp. 106–116
[9] Makovička J., Havlena, V., Beneš M.: Mathematical modelling of steam and flue gas flow in a heat exchanger of a steam boiler. In: ALGORITMY 2002 Proceedings of contributed papers (A. Handlovičová, Z. Krivá, K. Mikula, and D. Ševčovič, (eds.), Publ. house of STU, Bratislava 2002, pp. 171–178
[10] Beneš M., Illangasekare T. H., Mikyška J.: On the numerical treatment of sharp texture transitions in two-phase flow. In: Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura, and T. Nakaki, eds.), COE Lecture Note Vol. 3, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, 2006, pp. 106–116. ISSN: 1881-4042. Available on-line at http://www.math.kyushu-u.ac.jp/ masato/cj/proceedings-CJ05.html | MR
[11] Smoot L. D., Smith P. J.: Coal Combustion and Gasification. Plenum Press, New York 1985
[12] Soete G. G. De: Overall reaction rates of NO and N formation from fuel nitrogen. In: 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh 1975
[13] Zeldovich Y. B.: The oxidation of nitrogen in combustion and explosion. Acta Physicochimica 21 (1946), 577–628
[14] Zhou L. X., Zhang, Y., Zhang J.: Simulation of swirling coal combustion using a full two-fluid model and an AUSM turbulence-chemistry model. Fuel 82 (2003), 1001–1007 | DOI
[15] Zhou L. X., Zhang, Y., Zhang J.: Chemical kinetics database on the web. National Institute of Standards and Technology, 2000, http://www.kinetics.nist.gov
[16] Zhou L. X., Zhang, Y., Zhang J.: FLUENT User’s Guide. FLUENT Inc., 2005
[17] Zhou L. X., Zhang, Y., Zhang J.: MPI: A Message-Passing Interface Standard. MPI Forum, http://www.mpi-forum.org/docs/