Keywords: perturbed boundary conditions; imperfect pitchfork bifurcation; Turing instability
@article{KYB_2007_43_6_a10,
author = {Ogawa, Toshiyuki and Okuda, Takashi},
title = {Bifurcations for {Turing} instability without {SO(2)} symmetry},
journal = {Kybernetika},
pages = {869--877},
year = {2007},
volume = {43},
number = {6},
mrnumber = {2388400},
zbl = {1136.37042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/}
}
Ogawa, Toshiyuki; Okuda, Takashi. Bifurcations for Turing instability without SO(2) symmetry. Kybernetika, Tome 43 (2007) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/
[1] Carr J.: Applications of Center Manifold Theory. Springer–Verlag, Berlin 1981 | MR
[2] Dillon R., Maini P. K., Othmer H. G.: Pattern formation in generalized Turing systems I. Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32 (1994), 345–393 | MR | Zbl
[3] Kabeya Y., Morishita, H., Ninomiya H.: Imperfect bifurcations arising from elliptic boundary value problems. Nonlinear Anal. 48 (2002), 663–684 | DOI | MR | Zbl
[4] Kato Y., Fujimura K.: Folded solution branches in Rayleigh–Bénard convection in the presence of avoided crossings of neutral stability curves. J. Phys. Soc. Japan 75 (2006), 3, 034401–034405 | DOI
[5] Mizushima J., Nakamura T.: Repulsion of eigenvalues in the Rayleigh–Bénard problem. J. Phys. Soc. Japan 71 (2002), 3, 677–680 | DOI | Zbl
[6] Nishiura Y.: Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs 209, Americal Mathematical Society, Rhode Island 200. | MR
[7] Ogawa T., Okuda T.: Bifurcation analysis to Swift–Hohenberg equation with perturbed boundary conditions. In preparation | Zbl
[8] Tuckerman L., Barkley D.: Bifurcation analysis of the Eckhaus instability. Phys. D 46 (1990), 57–86 | DOI | MR | Zbl