Bifurcations for Turing instability without SO(2) symmetry
Kybernetika, Tome 43 (2007) no. 6, pp. 869-877 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the ${\rm SO(2)}$ symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the ${\rm SO(2)}$ symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
Classification : 35B32, 35K20, 35K55, 37G40, 37L10, 37L20
Keywords: perturbed boundary conditions; imperfect pitchfork bifurcation; Turing instability
@article{KYB_2007_43_6_a10,
     author = {Ogawa, Toshiyuki and Okuda, Takashi},
     title = {Bifurcations for {Turing} instability without {SO(2)} symmetry},
     journal = {Kybernetika},
     pages = {869--877},
     year = {2007},
     volume = {43},
     number = {6},
     mrnumber = {2388400},
     zbl = {1136.37042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/}
}
TY  - JOUR
AU  - Ogawa, Toshiyuki
AU  - Okuda, Takashi
TI  - Bifurcations for Turing instability without SO(2) symmetry
JO  - Kybernetika
PY  - 2007
SP  - 869
EP  - 877
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/
LA  - en
ID  - KYB_2007_43_6_a10
ER  - 
%0 Journal Article
%A Ogawa, Toshiyuki
%A Okuda, Takashi
%T Bifurcations for Turing instability without SO(2) symmetry
%J Kybernetika
%D 2007
%P 869-877
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/
%G en
%F KYB_2007_43_6_a10
Ogawa, Toshiyuki; Okuda, Takashi. Bifurcations for Turing instability without SO(2) symmetry. Kybernetika, Tome 43 (2007) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a10/

[1] Carr J.: Applications of Center Manifold Theory. Springer–Verlag, Berlin 1981 | MR

[2] Dillon R., Maini P. K., Othmer H. G.: Pattern formation in generalized Turing systems I. Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32 (1994), 345–393 | MR | Zbl

[3] Kabeya Y., Morishita, H., Ninomiya H.: Imperfect bifurcations arising from elliptic boundary value problems. Nonlinear Anal. 48 (2002), 663–684 | DOI | MR | Zbl

[4] Kato Y., Fujimura K.: Folded solution branches in Rayleigh–Bénard convection in the presence of avoided crossings of neutral stability curves. J. Phys. Soc. Japan 75 (2006), 3, 034401–034405 | DOI

[5] Mizushima J., Nakamura T.: Repulsion of eigenvalues in the Rayleigh–Bénard problem. J. Phys. Soc. Japan 71 (2002), 3, 677–680 | DOI | Zbl

[6] Nishiura Y.: Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs 209, Americal Mathematical Society, Rhode Island 200. | MR

[7] Ogawa T., Okuda T.: Bifurcation analysis to Swift–Hohenberg equation with perturbed boundary conditions. In preparation | Zbl

[8] Tuckerman L., Barkley D.: Bifurcation analysis of the Eckhaus instability. Phys. D 46 (1990), 57–86 | DOI | MR | Zbl