Keywords: Kullback–Leibler divergence; relative entropy; exponential family; information projection; log-Laplace transform; cumulant generating function; directional derivatives; first order optimality conditions; convex functions; polytopes
@article{KYB_2007_43_5_a9,
author = {Mat\'u\v{s}, Franti\v{s}ek},
title = {Optimality conditions for maximizers of the information divergence from an exponential family},
journal = {Kybernetika},
pages = {731--746},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2376334},
zbl = {1149.94007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a9/}
}
Matúš, František. Optimality conditions for maximizers of the information divergence from an exponential family. Kybernetika, Tome 43 (2007) no. 5, pp. 731-746. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a9/
[1] Ay N.: An information-geometric approach to a theory of pragmatic structuring. Ann. Probab. 30 (2002), 416–436 | MR | Zbl
[2] Ay N.: Locality of Global Stochastic Interaction in Directed Acyclic Networks. Neural Computation 14 (2002), 2959–2980 | Zbl
[3] Ay N., Knauf A.: Maximizing multi-information. Kybernetika 45 (2006), 517–538 | MR
[4] Ay N., Wennekers T.: Dynamical properties of strongly interacting Markov chains. Neural Networks 16 (2003), 1483–1497
[5] Barndorff-Nielsen O.: Information and Exponential Families in Statistical Theory. Wiley, New York 1978 | MR | Zbl
[6] Brown L. D.: Fundamentals of Statistical Exponential Families. (Lecture Notes – Monograph Series 9.) Institute of Mathematical Statistics, Hayward, CA 1986 | MR | Zbl
[8] Csiszár I., Matúš F.: Information projections revisited. IEEE Trans. Inform. Theory 49 (2003), 1474–1490 | MR | Zbl
[9] Csiszár I., Matúš F.: Closures of exponential families. Ann. Probab. 33 (2005), 582–600 | MR | Zbl
[10] Csiszár I., Matúš F.: Generalized maximum likelihood estimates for exponential families. To appear in Probab. Theory Related Fields (2008) | MR | Zbl
[11] Pietra S. Della, Pietra, V. Della, Lafferty J.: Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), 380–393
[12] Letac G.: Lectures on Natural Exponential Families and their Variance Functions. (Monografias de Matemática 50.) Instituto de Matemática Pura e Aplicada, Rio de Janeiro 1992 | MR | Zbl
[13] Matúš F.: Maximization of information divergences from binary i. i.d. sequences. In: Proc. IPMU 2004, Perugia 2004, Vol. 2, pp. 1303–1306
[14] Matúš F., Ay N.: On maximization of the information divergence from an exponential family. In: Proc. WUPES’03 (J. Vejnarová, ed.), University of Economics, Prague 2003, pp. 199–204
[15] Rockafellar R. T.: Convex Analysis. Princeton University Press, Priceton, N.J. 1970 | MR
[16] Wennekers T., Ay N.: Finite state automata resulting from temporal information maximization. Theory in Biosciences 122 (2003), 5–18 | Zbl