On possibilistic marginal problem
Kybernetika, Tome 43 (2007) no. 5, pp. 657-674 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A possibilistic marginal problem is introduced in a way analogous to probabilistic framework, to address the question of whether or not a common extension exists for a given set of marginal distributions. Similarities and differences between possibilistic and probabilistic marginal problems will be demonstrated, concerning necessary condition and sets of all solutions. The operators of composition will be recalled and we will show how to use them for finding a $T$-product extension. Finally, a necessary and sufficient condition for the existence of a solution will be presented.
A possibilistic marginal problem is introduced in a way analogous to probabilistic framework, to address the question of whether or not a common extension exists for a given set of marginal distributions. Similarities and differences between possibilistic and probabilistic marginal problems will be demonstrated, concerning necessary condition and sets of all solutions. The operators of composition will be recalled and we will show how to use them for finding a $T$-product extension. Finally, a necessary and sufficient condition for the existence of a solution will be presented.
Classification : 28E10
Keywords: marginal problem; possibility distributions; triangular norm; conditioning; conditional independence; extension
@article{KYB_2007_43_5_a5,
     author = {Vejnarov\'a, Ji\v{r}ina},
     title = {On possibilistic marginal problem},
     journal = {Kybernetika},
     pages = {657--674},
     year = {2007},
     volume = {43},
     number = {5},
     mrnumber = {2376330},
     zbl = {1152.28020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/}
}
TY  - JOUR
AU  - Vejnarová, Jiřina
TI  - On possibilistic marginal problem
JO  - Kybernetika
PY  - 2007
SP  - 657
EP  - 674
VL  - 43
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/
LA  - en
ID  - KYB_2007_43_5_a5
ER  - 
%0 Journal Article
%A Vejnarová, Jiřina
%T On possibilistic marginal problem
%J Kybernetika
%D 2007
%P 657-674
%V 43
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/
%G en
%F KYB_2007_43_5_a5
Vejnarová, Jiřina. On possibilistic marginal problem. Kybernetika, Tome 43 (2007) no. 5, pp. 657-674. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/

[1] Campos L. M. de, Huete J. F.: Independence concepts in possibility theory: Part 1. Fuzzy Sets and Systems 103 (1999), 127–152 | MR

[2] Campos L. M. de, Huete J. F.: Independence concepts in possibility theory: Part 2. Fuzzy Sets and Systems 103 (1999), 487–505 | MR

[3] Cooman G. de: Possibility theory I – III. Internat. J. Gen. Systems 25 (1997), 291–371 | MR

[4] Fonck P.: Conditional independence in possibility theory. In: Proc. 10th Conference UAI (R. L. de Mantaras and P. Poole, eds.), Morgan Kaufman, San Francisco 1994, pp. 221–226

[5] Janssen H., Cooman, G. de, Kerre E. E.: First results for a mathematical theory of possibilistic Markov processes. In: Proc. IPMU’96, volume III (Information Processing and Management of Uncertainty in Knowledge-Based Systems), Granada 1996, pp. 1425–1431

[6] Jiroušek R.: Composition of probability measures on finite spaces. In: Proc. 13th Conference UAI (D. Geiger and P. P. Shennoy, eds.), Morgan Kaufman, San Francisco 1997, pp. 274–281

[7] Malvestuto F. M.: Existence of extensions and product extensions for discrete probability distributions. Discrete Math. 69 (1988), 61–77 | MR | Zbl

[8] Perez A.: $\varepsilon $-admissible simplification of the dependence structure of a set of random variables. Kybernetika 13 (1977), 439–450 | MR

[9] Perez A.: A probabilistic approach to the integration of partial knowledge for medical decisionmaking (in Czech). In: Proc. 1st Czechoslovak Congress of Biomedical Engineering (BMI’83), Mariánské Lázně 1983, pp. 221–226

[10] Vejnarová J.: Composition of possibility measures on finite spaces: Preliminary results. In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’98, Paris 1998, pp. 25–30

[11] Vejnarová J.: Possibilistic independence and operators of composition of possibility measures. In: Prague Stochastics’98 (M. Hušková, J. Á. Víšek, and P. Lachout, eds.), Union of the Czech Mathematicians and Physicists, Prague 1998, pp. 575–580

[12] Vejnarová J.: Conditional independence relations in possibility theory. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000), 253–269 | MR | Zbl

[13] Vejnarová J.: Markov properties and factorization of possibility distributions. Ann. Math. Artif. Intell. 35 (2002), 357–377 | MR | Zbl

[14] Walley P., Cooman G. de: Coherence rules for defining conditional possibility. Internat. J. Approx. Reason. 21 (1999), 63–104 | MR