Keywords: marginal problem; possibility distributions; triangular norm; conditioning; conditional independence; extension
@article{KYB_2007_43_5_a5,
author = {Vejnarov\'a, Ji\v{r}ina},
title = {On possibilistic marginal problem},
journal = {Kybernetika},
pages = {657--674},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2376330},
zbl = {1152.28020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/}
}
Vejnarová, Jiřina. On possibilistic marginal problem. Kybernetika, Tome 43 (2007) no. 5, pp. 657-674. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a5/
[1] Campos L. M. de, Huete J. F.: Independence concepts in possibility theory: Part 1. Fuzzy Sets and Systems 103 (1999), 127–152 | MR
[2] Campos L. M. de, Huete J. F.: Independence concepts in possibility theory: Part 2. Fuzzy Sets and Systems 103 (1999), 487–505 | MR
[3] Cooman G. de: Possibility theory I – III. Internat. J. Gen. Systems 25 (1997), 291–371 | MR
[4] Fonck P.: Conditional independence in possibility theory. In: Proc. 10th Conference UAI (R. L. de Mantaras and P. Poole, eds.), Morgan Kaufman, San Francisco 1994, pp. 221–226
[5] Janssen H., Cooman, G. de, Kerre E. E.: First results for a mathematical theory of possibilistic Markov processes. In: Proc. IPMU’96, volume III (Information Processing and Management of Uncertainty in Knowledge-Based Systems), Granada 1996, pp. 1425–1431
[6] Jiroušek R.: Composition of probability measures on finite spaces. In: Proc. 13th Conference UAI (D. Geiger and P. P. Shennoy, eds.), Morgan Kaufman, San Francisco 1997, pp. 274–281
[7] Malvestuto F. M.: Existence of extensions and product extensions for discrete probability distributions. Discrete Math. 69 (1988), 61–77 | MR | Zbl
[8] Perez A.: $\varepsilon $-admissible simplification of the dependence structure of a set of random variables. Kybernetika 13 (1977), 439–450 | MR
[9] Perez A.: A probabilistic approach to the integration of partial knowledge for medical decisionmaking (in Czech). In: Proc. 1st Czechoslovak Congress of Biomedical Engineering (BMI’83), Mariánské Lázně 1983, pp. 221–226
[10] Vejnarová J.: Composition of possibility measures on finite spaces: Preliminary results. In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’98, Paris 1998, pp. 25–30
[11] Vejnarová J.: Possibilistic independence and operators of composition of possibility measures. In: Prague Stochastics’98 (M. Hušková, J. Á. Víšek, and P. Lachout, eds.), Union of the Czech Mathematicians and Physicists, Prague 1998, pp. 575–580
[12] Vejnarová J.: Conditional independence relations in possibility theory. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000), 253–269 | MR | Zbl
[13] Vejnarová J.: Markov properties and factorization of possibility distributions. Ann. Math. Artif. Intell. 35 (2002), 357–377 | MR | Zbl
[14] Walley P., Cooman G. de: Coherence rules for defining conditional possibility. Internat. J. Approx. Reason. 21 (1999), 63–104 | MR