Keywords: graphical probabilistic models; probabilistic inference; marginal problem
@article{KYB_2007_43_5_a3,
author = {K\v{r}{\'\i}\v{z}, Otakar},
title = {Comparing algorithms based on marginal problem},
journal = {Kybernetika},
pages = {633--647},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2376328},
zbl = {1148.68520},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a3/}
}
Kříž, Otakar. Comparing algorithms based on marginal problem. Kybernetika, Tome 43 (2007) no. 5, pp. 633-647. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a3/
[1] Cheeseman P.: A method of computing generalized Bayesian probability values of expert systems with probabilistic background. In: Proc. 6th Joint Conf. on AI(IJCAI-83), Karlsruhe
[2] Deming W. E., Stephan F. F: On a least square adjustment of sampled frequency table when expected marginal totals are known. Ann. Math. Stat. 11 (1940), 427–444 | MR
[3] Perez A.: $\varepsilon $-admissible simplifications of the dependence structure of random variables. Kybernetika 13 (1979), 439–449 | MR
[5] Jaynes E. T.: On the rationale of maximum-entropy methods. Proc. IEEE 70 (1980), 939–952
[6] Jiroušek R., Perez, A., Kříž O.: Intensional way of knowledge integration for expert systems. In: DIS’88 – Distributed Intelligence Systems, Varna 1988, pp. 219–227
[7] Kellerer H. G.: Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch. verw. Gebiete 3 (1964), 247–270 | MR | Zbl
[8] Kříž O.: A new algorithm for decision making with probabilistic background In: Trans. Eleventh Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Vol. B, Prague 1990, Academia, Prague 1992, pp. 135–143
[9] Kříž O.: Optimizations on finite-dimensional distributions with fixed marginals. In: WUPES 94, Proc. Third Workshop on Uncertainty Processing (R. Jiroušek, ed.), Třešť 1994, pp. 143–156