Keywords: graphical probabilistic models; probabilistic inference; tensor rank
@article{KYB_2007_43_5_a10,
author = {Savicky, Petr and Vomlel, Ji\v{r}{\'\i}},
title = {Exploiting tensor rank-one decomposition in probabilistic inference},
journal = {Kybernetika},
pages = {747--764},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2376335},
zbl = {1148.68539},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a10/}
}
Savicky, Petr; Vomlel, Jiří. Exploiting tensor rank-one decomposition in probabilistic inference. Kybernetika, Tome 43 (2007) no. 5, pp. 747-764. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a10/
[1] Chavira M., Darwiche A.: Compiling Bayesian networks with local structure. In: Proc. 19th Internat. Joint Conference on Artificial Intelligence (IJCAI), Edinburgh 2005, pp. 1306–1312
[2] Darwiche A.: A differential approach to inference in Bayesian networks. J. Assoc. Comput. Mach. 50 (2003), 3, 280–305 | MR
[3] Lathauwer L. De, Moor B. De: From matrix to tensor: multilinear algebra and signal processing. In: 4th Internat. Conference on Mathematics in Signal Processing, Part I, IMA Conference Series, Warwick 1996, pp. 1–11
[4] Lathauwer L. De, Moor, B. De, Vandewalle J.: On the best Rank-1 and Rank-$(R_1,R_2,\ldots ,R_N)$ approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21 (2000), 4, 1324–1342 | MR
[5] Díez F. J., Galán S. F.: An efficient factorization for the noisy MAX. Internat. J. Intell. Systems 18 (2003), 2, 165–177
[6] Golub G. H., Loan C. F. Van: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore 1996 | MR
[7] Heckerman D.: A tractable inference algorithm for diagnosing multiple diseases. In: Proc. Fifth Annual Conference on Uncertainty in AI (M. Henrion, R. D. Shachter, L. N. Kanal, and J. F. Lemmer, eds.), August 18–21, 1989, Windsor, ON, pp. 163–171
[8] Heckerman D.: Causal independence for knowledge acquisition and inference. In: Proc. Ninth Conference on Uncertainty in AI (D. Heckerman and A. Mamdani, eds.), July 9–11, 1993, Washington, D.C., pp. 122–127
[9] Heckerman D., Breese J. S.: A new look at causal independence. In: Proc. Tenth Conference on Uncertainty in AI (R. Lopez de Mantaras and D. Poole, eds.), July 29–31, 1994, Seattle, WA, pp. 286–292
[10] Håstad J.: Tensor Rank is NP-complete. J. Algorithms 11 (1990), 644–654 | MR | Zbl
[11] Jensen F. V.: Bayesian Networks and Decision Graphs. (Statistics for Engineering and Information Science.) Springer–Verlag, New York – Berlin – Heidelberg 2001 | MR
[12] Jensen F. V., Lauritzen S. L., Olesen K. G.: Bayesian updating in recursive graphical models by local computation. Computat. Statist. Quart. 4 (1990), 269–282 | MR
[13] Lauritzen S. L.: Graphical Models. Clarendon Press, Oxford 1996 | MR | Zbl
[14] Olesen K. G., Kjærulff U., Jensen F., Jensen F. V., Falck B., Andreassen S., Andersen S. K.: A MUNIN network for the median nerve – a case study on loops. Appl. Artif. Intell., Special issue: Towards Causal AI Models in Practice 3 (1989), 384–403
[15] Polak E.: Computational Methods in Optimization: A Unified Approach. Academic Press, New York 1971 | MR | Zbl
[16] Takikawa M., D’Ambrosio B.: Multiplicative factorization of noisy-max. In: Proc. Fifteenth Conference on Uncertainty in AI (K. B. Laskey and H. Prade, eds.), July 30 – August 1, 1999, Stockholm, pp. 622–630
[17] Vomlel J.: Exploiting functional dependence in Bayesian network inference. In: Proc. Eighteenth Conference on Uncertainty in AI (UAI) – Edmonton (Canada), Morgan Kaufmann, San Francisco 2002, pp. 528–535
[18] Zhang N. L., Poole D.: Exploiting causal independence in Bayesian network inference. J. Artif. Intell. Res. 5 (1996), 301–328 | MR | Zbl