Keywords: marginal problem; relative entropy; dependence structure simplification; explicit expression approximation; multiinformation; decomposable model; asteroid
@article{KYB_2007_43_5_a1,
author = {Perez, Albert and Studen\'y, Milan},
title = {Comparison of two methods for approximation of probability distributions with prescribed marginals},
journal = {Kybernetika},
pages = {591--618},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2376326},
zbl = {1144.68379},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a1/}
}
TY - JOUR AU - Perez, Albert AU - Studený, Milan TI - Comparison of two methods for approximation of probability distributions with prescribed marginals JO - Kybernetika PY - 2007 SP - 591 EP - 618 VL - 43 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a1/ LA - en ID - KYB_2007_43_5_a1 ER -
Perez, Albert; Studený, Milan. Comparison of two methods for approximation of probability distributions with prescribed marginals. Kybernetika, Tome 43 (2007) no. 5, pp. 591-618. http://geodesic.mathdoc.fr/item/KYB_2007_43_5_a1/
[1] Csiszár I., Matúš F.: Information projections revisited. IEEE Trans. Inform. Theory 49 (2003), 1474–1490 | MR | Zbl
[2] Kellerer H. G.: Verteilungsfunktionen mit gegebenem Marginalverteilungen (in German, translation: Distribution functions with given marginal distributions). Z. Wahrsch. verw. Gerbiete 3 (1964), 247–270 | MR
[3] Lauritzen S. L.: Graphical Models. Clarendon Press, Oxford 1996 | MR | Zbl
[4] Perez A.: $\varepsilon $-admissible simplifications of the dependence structure of random variables. Kybernetika 13 (1979), 439–449 | MR
[5] Perez A.: The barycenter concept of a set of probability measures as a tool in statistical decision. In: The book of abstracts of the 4th Internat. Vilnius Conference on Probability Theory and Mathematical Statistics 1985, pp. 226–228
[6] Perez A.: Princip maxima entropie a princip barycentra při integraci dílčích znalostí v expertních systémech (in Czech, translation: The maximum entropy principle and the barycenter principle in partial knowledge integration in expert systems). In: Metody umělé inteligence a expertní systémy III (V. Mařík and Z. Zdráhal, eds.), ČSVT – FEL ČVUT, Prague 1987, pp. 62–74
[7] Perez A.: Explicit expression Exe – containing the same multiinformation as that in the given marginal set – for approximating probability distributions. A manuscript in Word, 2003
[8] Studený M.: Pojem multiinformace v pravděpodobnostním rozhodování (in Czech, translation: The notion of multiinformation in probabilistic decision-making). CSc Thesis, Czechoslovak Academy of Sciences, Institute of Information Theory and Automation, Prague 1987
[9] Studený M.: Probabilistic Conditional Independence Structures. Springer–Verlag, London 2005