Fuzzy data in statistics
Kybernetika, Tome 43 (2007) no. 4, pp. 491-502 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The development of effective methods of data processing belongs to important challenges of modern applied mathematics and theoretical information science. If the natural uncertainty of the data means their vagueness, then the theory of fuzzy quantities offers relatively strong tools for their treatment. These tools differ from the statistical methods and this difference is not only justifiable but also admissible. This relatively brief paper aims to summarize the main fuzzy approaches to vague data processing, to discuss their main advantages and also their essential limitations, and to specify their place in the wide scale of information and knowledge processing methods effective for vague data.
The development of effective methods of data processing belongs to important challenges of modern applied mathematics and theoretical information science. If the natural uncertainty of the data means their vagueness, then the theory of fuzzy quantities offers relatively strong tools for their treatment. These tools differ from the statistical methods and this difference is not only justifiable but also admissible. This relatively brief paper aims to summarize the main fuzzy approaches to vague data processing, to discuss their main advantages and also their essential limitations, and to specify their place in the wide scale of information and knowledge processing methods effective for vague data.
Classification : 03E72, 08A72, 62A01, 62–07
Keywords: fuzzy quantity; extension principle; fuzzy data
@article{KYB_2007_43_4_a9,
     author = {Mare\v{s}, Milan},
     title = {Fuzzy data in statistics},
     journal = {Kybernetika},
     pages = {491--502},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377927},
     zbl = {1134.62001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a9/}
}
TY  - JOUR
AU  - Mareš, Milan
TI  - Fuzzy data in statistics
JO  - Kybernetika
PY  - 2007
SP  - 491
EP  - 502
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a9/
LA  - en
ID  - KYB_2007_43_4_a9
ER  - 
%0 Journal Article
%A Mareš, Milan
%T Fuzzy data in statistics
%J Kybernetika
%D 2007
%P 491-502
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a9/
%G en
%F KYB_2007_43_4_a9
Mareš, Milan. Fuzzy data in statistics. Kybernetika, Tome 43 (2007) no. 4, pp. 491-502. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a9/

[1] Dubois D., Prade H.: Fuzzy numbers: An overview. In: Analysis of Fuzzy Information (J. C. Bezdek, ed.), Vol. 2, CRC-Press, Boca Raton 1988, pp. 3–39 | MR

[2] Dubois D., Kerre E. E., Mesiar, R., Prade H.: Fuzzy interval analysis. In: Fundamental of Fuzzy Sets, Vol. 1, Kluwer Academic Publishers Kluwer Acad. Publ, Dodrecht 2000, pp. 483–581 | DOI | MR | Zbl

[3] Kacprzyk J., (eds.) M. Fedrizi: Fuzzy Regression Analysis. Omnitech Press, Physica–Verlag, Warsaw 1992 | MR

[4] Kerre E. E., Wang X.: Reasonable properties for the ordering of fuzzy quantities. Part I, Part II. Fuzzy Sets and Systems 118 (2001), 375–385, 387–405 | Zbl

[5] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[6] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica–Verlag, Heidelberg 2002 | MR | Zbl

[7] Mareš M.: Computation Over Fuzzy quantities. CRC–Press, Boca Raton 1994 | MR | Zbl

[8] Mareš M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 2, 143–154 | DOI | MR

[9] Mareš M., Mesiar R.: Verbally generated fuzzy quantities and their aggregation. In: Analysis of Fuzzy Information (J. C. Bezdek, ed.), Vol. 2, CRC-Press, Boca Raton 1988, pp. 291–3352 | MR

[10] Mareš M., Mesiar R.: Dual meaning of verbal quantities. Kybernetika 38 (2002), 6, 709–716 | MR

[11] Chien, Tran Quoc: Medium distances of probability fuzzy-points and an application to linear programming. Kybernetika 25 (1989), 6, 494–504 | MR | Zbl

[12] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 3, 338–353 | DOI | MR | Zbl