On some contributions to quantum structures by fuzzy sets
Kybernetika, Tome 43 (2007) no. 4, pp. 481-490 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that the fuzzy sets theory can be successfully used in quantum models ([5, 26]). In this paper we give first a review of recent development in the probability theory on tribes and their generalizations – multivalued (MV)-algebras. Secondly we show some applications of the described method to develop probability theory on IF-events.
It is well known that the fuzzy sets theory can be successfully used in quantum models ([5, 26]). In this paper we give first a review of recent development in the probability theory on tribes and their generalizations – multivalued (MV)-algebras. Secondly we show some applications of the described method to develop probability theory on IF-events.
Classification : 03B50, 03G12, 06D35, 28E10, 60A05, 60B99
Keywords: probability; fuzzy sets; MV-algebra; IF events
@article{KYB_2007_43_4_a8,
     author = {Rie\v{c}an, Beloslav},
     title = {On some contributions to quantum structures by fuzzy sets},
     journal = {Kybernetika},
     pages = {481--490},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377926},
     zbl = {1139.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a8/}
}
TY  - JOUR
AU  - Riečan, Beloslav
TI  - On some contributions to quantum structures by fuzzy sets
JO  - Kybernetika
PY  - 2007
SP  - 481
EP  - 490
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a8/
LA  - en
ID  - KYB_2007_43_4_a8
ER  - 
%0 Journal Article
%A Riečan, Beloslav
%T On some contributions to quantum structures by fuzzy sets
%J Kybernetika
%D 2007
%P 481-490
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a8/
%G en
%F KYB_2007_43_4_a8
Riečan, Beloslav. On some contributions to quantum structures by fuzzy sets. Kybernetika, Tome 43 (2007) no. 4, pp. 481-490. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a8/

[1] Atanassov K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica–Verlag, New York 1999 | MR | Zbl

[2] Cignoli L. O., D’Ottaviano M. L., Mundici D.: Algebraic Foundations of Many–valued Reasoning. Kluwer, Dordrecht 2000 | Zbl

[3] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika 41 (2005), 143–160 | MR

[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II: MV-algebras. Kybernetika 41 (2005), 161–176 | MR

[5] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer, Dordrecht 2000 | MR

[6] Gerstenkorn T., Manko J.: Probabilities of intuitionistic fuzzy events. In: Issues in Intelligent Systems: Paradigms (O. Hryniewicz et al., eds.). EXIT, Warszawa, pp. 63–58

[7] Grzegorzewski P., Mrowka E.: Probability of intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al., eds.). Physica–Verlag, New York 2002, pp. 105–115 | MR

[8] Halmos P. R.: Measure Theory. Van Nostrand, New York 1950 | MR | Zbl

[9] Kolmogorov A. N.: Foundations of the Theory of Probability. Chelsea Press, New York 1950 (German original appeared in 1933) | MR

[10] Lendelová K.: Measure Theory on Multivalued Logics and its Applications. Ph.D. Thesis. M. Bel University, Banská Bystrica 2005

[11] Lendelová K.: Probability on L-posets. In: Proc. Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (EUSFLAT-LFA 2005 Joint Conference), Technical University of Catalonia, Barcelona, pp. 320–324

[12] Lendelová K.: A note on invariant observables. Internat. J. Theoret. Physics 45 (2006), 915–923 | MR | Zbl

[13] Lendelová K.: Central Limit Theorem for L-posets. J. Electr. Engrg. 12/S (2005), 56, 7–9 | Zbl

[14] Montagna F.: An algebraic approach to propositional fuzzy logic. J. Logic. Lang. Inf. 9 (2000), 91–124 | MR | Zbl

[15] Neumann J. von: Grundlagen der Quantenmechanik. Berlin 1932

[16] Riečan B.: A new approach to some notions of statistical quantum mechanics. BUSEFAL 36 (1988), 4–6

[17] Riečan B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149 | MR | Zbl

[18] Riečan B.: Representation of probabilities on IFS events. In: Advances in Soft Computing, Soft Methodology and Random Information Systems (M. Lopez–Diaz et al., eds.) Springer–Verlag, Berlin 2004, pp. 243–246 | MR | Zbl

[19] Riečan B.: Free products of probability MV-algebras. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 173–186 | MR | Zbl

[20] Riečan B.: The conjugacy of probability MV-$\sigma $-algebras with the unit interval. Atti Sem. Mat. Fis. Univ. Modena 52 (2004), 241–248 | MR | Zbl

[21] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras. Internat. J. Theoret. Physics 44 (2005), 1041–1052 | MR | Zbl

[22] Riečan B.: On the probability on IF-sets and MV-algebras. Notes on IFS 11 (2005), 6, 21–25

[23] Riečan B.: On the probability and random variables on IF events. In: Applied Artificial Intelligence (Proc. 7th FLINS Conf. Genova, Da Ruan et al., eds.), World Scientific 2006, pp. 138–145

[24] Riečan B., Jurečková M.: On invariant observables and the individual ergodic theorem. Internat. J. Theoret. Physics 44 (2005), 1587–1597 | MR

[25] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook on Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002 | MR | Zbl

[26] Riečan B., Neubrunn T.: Integral, Measure, and Ordering. Kluwer, Dordrecht 1997 | MR | Zbl

[27] Schmidt E., Kacprzyk J.: Probability of intuitionistic fuzzy events and their applications in decision making. In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 457–460