Keywords: variance components; approximate confidence intervals; mixed linear model
@article{KYB_2007_43_4_a7,
author = {Arendack\'a, Barbora},
title = {A modification of the {Hartung-Knapp} confidence interval on the variance component in two-variance-component models},
journal = {Kybernetika},
pages = {471--480},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377925},
zbl = {1134.62018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a7/}
}
TY - JOUR AU - Arendacká, Barbora TI - A modification of the Hartung-Knapp confidence interval on the variance component in two-variance-component models JO - Kybernetika PY - 2007 SP - 471 EP - 480 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a7/ LA - en ID - KYB_2007_43_4_a7 ER -
Arendacká, Barbora. A modification of the Hartung-Knapp confidence interval on the variance component in two-variance-component models. Kybernetika, Tome 43 (2007) no. 4, pp. 471-480. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a7/
[1] Arendacká A.: Approximate confidence intervals on the variance component in a general case of a two-component model. In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians and Physicists, Prague 2006, pp. 9–17
[2] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 | MR | Zbl
[3] Boardman T. J.: Confidence intervals for variance components – a comparative Monte Carlo study. Biometrics 30 (1974), 251–262 | Zbl
[4] Burdick R. K., Graybill F. A.: Confidence Intervals on Variance Components. Marcel Dekker, New York 1992 | MR | Zbl
[5] El-Bassiouni M. Y.: Short confidence intervals for variance components. Comm. Statist. Theory Methods 23 (1994), 7, 1951–1933 | MR | Zbl
[6] Hartung J., Knapp G.: Confidence intervals for the between group variance in the unbalanced one-way random effects model of analysis of variance. J. Statist. Comput. Simulation 65 (2000), 4, 311–323 | MR | Zbl
[7] Park D. J., Burdick R. K.: Performance of confidence intervals in regression models with unbalanced one-fold nested error structures. Comm. Statist. Simulation Computation 32 (2003), 3, 717–732 | MR | Zbl
[8] Seely J., El-Bassiouni Y.: Applying Wald’s variance component test. Ann. Statist. 11 (1983), 1, 197–201 | MR | Zbl
[9] Tate R. F., Klett G. W.: Optimal confidence intervals for the variance of a normal distribution. J. Amer. Statist. Assoc. 54 (1959), 287, 674–682 | MR | Zbl
[10] Thomas J. D., Hultquist R. A.: Interval estimation for the unbalanced case of the one-way random effects model. Ann. Statist. 6 (1978), 3, 582–587 | MR | Zbl
[11] Tukey J. W.: Components in regression. Biometrics 7 (1951), 1, 33–69
[12] Wald A.: A note on the analysis of variance with unequal class frequencies. Ann. Math. Statist. 11 (1940), 96–100 | MR
[13] Wald A.: A note on regression analysis. Ann. Math. Statist. 18 (1947), 4, 586–589 | MR | Zbl
[14] Williams J. S.: A confidence interval for variance components. Biometrika 49 (1962), 1/2, 278–281 | MR | Zbl