Criteria for optimal design of small-sample experiments with correlated observations
Kybernetika, Tome 43 (2007) no. 4, pp. 453-462 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider observations of a random process (or a random field), which is modeled by a nonlinear regression with a parametrized mean (or trend) and a parametrized covariance function. Optimality criteria for parameter estimation are to be based here on the mean square errors (MSE) of estimators. We mention briefly expressions obtained for very small samples via probability densities of estimators. Then we show that an approximation of MSE via Fisher information matrix is possible, even for small or moderate samples, when the errors of observations are normal and small. Finally, we summarize some properties of optimality criteria known for the noncorrelated case, which can be transferred to the correlated case, in particular a recently published concept of universal optimality.
We consider observations of a random process (or a random field), which is modeled by a nonlinear regression with a parametrized mean (or trend) and a parametrized covariance function. Optimality criteria for parameter estimation are to be based here on the mean square errors (MSE) of estimators. We mention briefly expressions obtained for very small samples via probability densities of estimators. Then we show that an approximation of MSE via Fisher information matrix is possible, even for small or moderate samples, when the errors of observations are normal and small. Finally, we summarize some properties of optimality criteria known for the noncorrelated case, which can be transferred to the correlated case, in particular a recently published concept of universal optimality.
Classification : 62K05, 62M10, 62M40
Keywords: optimal design; correlated observations; random field; spatial statistics; information matrix
@article{KYB_2007_43_4_a5,
     author = {P\'azman, Andrej},
     title = {Criteria for optimal design of small-sample experiments with correlated observations},
     journal = {Kybernetika},
     pages = {453--462},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377923},
     zbl = {1134.62055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a5/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - Criteria for optimal design of small-sample experiments with correlated observations
JO  - Kybernetika
PY  - 2007
SP  - 453
EP  - 462
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a5/
LA  - en
ID  - KYB_2007_43_4_a5
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T Criteria for optimal design of small-sample experiments with correlated observations
%J Kybernetika
%D 2007
%P 453-462
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a5/
%G en
%F KYB_2007_43_4_a5
Pázman, Andrej. Criteria for optimal design of small-sample experiments with correlated observations. Kybernetika, Tome 43 (2007) no. 4, pp. 453-462. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a5/

[1] Apt M., Welch W. J.: Fisher information and maximum likelihood estimation of covariance parameters in Gaussian stochastic processes. Canad. J. Statist. 26 (1998), 127–137 | MR

[2] Brimkulov U. N., Krug G. K., Savanov V. L.: Design of Experiments in Investigating Random Fields and Processes. Nauka, Moscow 1986

[3] Brown L. D.: Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. (Vol. 9 of Institute of Mathematical Statistics Lecture Notes – Monograph Series.) Institute of Mathematical Statistics, Hayward 1986 | MR | Zbl

[4] Cresie N. A. C.: Statistics for Spatial Data. Wiley, New York 1993 | MR

[5] Gauchi J. P., Pázman A.: Design in nonlinear regression by stochastic minimization of functionals of the mean square error matrix. J. Statist. Plann. Inference 136 (2006), 1135–1152 | MR

[6] Harman R.: Minimal efficiency of designs under the class of orthogonally invariant information criteria. Metrika 60 (2004), 137–153 | MR | Zbl

[7] Müller W. G., Pázman A.: An algorithm for computation of optimum designs under a given covariance structure. Comput. Statist. 14 (1999), 197–211 | MR

[8] Pázman A.: Probability distribution of the multivariate nonlinear least squares estimates. Kybernetika 20 (1984), 209–230 | MR

[9] Pázman A.: Nonlinear Statistical Models. Kluwer, Dordrecht – Boston 1993 | Zbl

[10] Pázman A.: Correlated Optimum Design with Parametrized Covariance Function: Justification of the Use of the Fisher Information Matrix and of the Method of Virtual Noise. Research Report No. 5, Institut für Statistik, WU Wien, Vienna 2004

[11] Pázman A., Pronzato L.: Nonlinear experimental design based on the distribution of estimators. J. Statist. Plann. Inference 33 (1992), 385–402 | MR | Zbl

[12] Pukelsheim F.: Optimal Design of Experiments. Wiley, New York 1993 | MR | Zbl

[13] Sacks J., Welch W. J., Mitchell T. J., Wynn H. P.: Design and analysis of computer experiments. Statist. Sci. 4 (1989), 409–435 | MR | Zbl

[14] Spivak M.: Calculus on Manifolds. W. A. Benjamin, Inc., Menlo Park, Calif. 1965 | MR | Zbl

[15] Uciński D., Atkinson A. C.: Experimental design for time-dependent models with correlated observations. Stud. Nonlinear Dynamics & Econometrics 8 (2004), Issue 2, Article 13 | Zbl