Applications of regime-switching models based on aggregation operators
Kybernetika, Tome 43 (2007) no. 4, pp. 431-442 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A synthesis of recent development of regime-switching models based on aggregation operators is presented. It comprises procedures for model specification and identification, parameter estimation and model adequacy testing. Constructions of models for real life data from hydrology and finance are presented.
A synthesis of recent development of regime-switching models based on aggregation operators is presented. It comprises procedures for model specification and identification, parameter estimation and model adequacy testing. Constructions of models for real life data from hydrology and finance are presented.
Classification : 37M10, 37N10, 37N40, 62M07, 68T37, 93B30, 93E12
Keywords: time series; regime-switching model; aggregation operator; model adequacy testing
@article{KYB_2007_43_4_a3,
     author = {Komorn{\'\i}k, Jozef and Komorn{\'\i}kov\'a, Magda},
     title = {Applications of regime-switching models based on aggregation operators},
     journal = {Kybernetika},
     pages = {431--442},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377921},
     zbl = {1137.37333},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a3/}
}
TY  - JOUR
AU  - Komorník, Jozef
AU  - Komorníková, Magda
TI  - Applications of regime-switching models based on aggregation operators
JO  - Kybernetika
PY  - 2007
SP  - 431
EP  - 442
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a3/
LA  - en
ID  - KYB_2007_43_4_a3
ER  - 
%0 Journal Article
%A Komorník, Jozef
%A Komorníková, Magda
%T Applications of regime-switching models based on aggregation operators
%J Kybernetika
%D 2007
%P 431-442
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a3/
%G en
%F KYB_2007_43_4_a3
Komorník, Jozef; Komorníková, Magda. Applications of regime-switching models based on aggregation operators. Kybernetika, Tome 43 (2007) no. 4, pp. 431-442. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a3/

[1] Bacigál T.: Multivariate threshold autoregressive models in Geodesy. J. Electrical Engineering 55 (2004), 12/s, 91–94 | Zbl

[2] Bacon D. W., Watts D. G.: Estimating the transition between two intersecting lines. Biometrica 58 (1971), 525–534

[3] Bognár T.: Time Series Analysis Applied in Geodesy and Geodynamics. Ph.D. Thesis, Bratislava 2005

[4] Bognár T., Komorník, J., Komorníková M.: New STAR models of time series and their application in finance. In: Proc. 16th Symposium COMPSTAT 2004, Prague 2004 (J. Antoch, ed.), Physica-Verlag, Heidelberg 2004, pp. 713–720 | MR

[5] Brown B. Y., Mariano R. S.: Predictors in dynamic nonlinear models: large sample behaviour. Econometric Theory 5 (1989), 430–452 | MR

[6] Calvo T., Mesiar, R., (eds.) G. Mayor: Aggregation Operators (Studies in Fuzziness and Soft Computing 31). Physica–Verlag, Heidelberg 2002 | MR

[7] Diebold F. X., Mariano R. S.: Comparing predictive accuracy. J. Business and Economic Statistics 13 (1995), 253–263

[8] Franses P. H., Dijk D.: Non-linear Time Series Models in Empirical Finance. Cambridge University Press, Cambridge 2000

[9] Hansen B. E.: Inference in TAR models. Studies in Nonlinear Dynamic and Econometrics 2 (1997), 1–14 | MR | Zbl

[10] Hansen B. E.: Sample splitting and threshold estimation. Econometrica 68 (2000), 3, 575–603 | MR | Zbl

[11] Komorníková M., Komorník J.: Application of aggregation operators in regime-switching models for exchange rates. In: Proc. EUSFLAT-LFA 2005, Barcelona 2005, pp. 1297–1300

[12] Komorník J., Komorníková, M., Szökeová D.: Testing the adequacy of regime-switching time series models nased on aggregation pperators. Submitted

[14] Teräsvirta T.: Specification, estimation, and evaluation of smooth transition models. J. Amer. Statist. Assoc. 89 (1994), 208–218

[15] Tong H.: On a threshold model. In: Pattern Recognition and Signal Processing (C. H. Chen, ed.), Amsterdam 1978, pp. 101–141

[16] Tong H.: Non-linear Time Series: A Dynamical Systems Approach. Oxford University Press, Oxford 1990

[17] Tsay R. S.: Testing and modeling multivariate threshold models. J. Amer. Statist. Assoc. 93 (1998), 1188–1202 | MR | Zbl