Testing a homogeneity of stochastic processes
Kybernetika, Tome 43 (2007) no. 4, pp. 415-430 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper concentrates on modeling the data that can be described by a homogeneous or non-homogeneous Poisson process. The goal is to decide whether the intensity of the process is constant or not. In technical practice, e.g., it means to decide whether the reliability of the system remains the same or if it is improving or deteriorating. We assume two situations. First, when only the counts of events are known and, second, when the times between the events are available. Several statistical tests for a detection of a change in an intensity of the Poisson process are described and illustrated by an example. We cover both the case when the time of the change is assumed to be known or unknown.
The paper concentrates on modeling the data that can be described by a homogeneous or non-homogeneous Poisson process. The goal is to decide whether the intensity of the process is constant or not. In technical practice, e.g., it means to decide whether the reliability of the system remains the same or if it is improving or deteriorating. We assume two situations. First, when only the counts of events are known and, second, when the times between the events are available. Several statistical tests for a detection of a change in an intensity of the Poisson process are described and illustrated by an example. We cover both the case when the time of the change is assumed to be known or unknown.
Classification : 60K99, 62E20, 62F03, 62M07
Keywords: homogeneous and non-homogeneous Poisson process; counting process; change point detection
@article{KYB_2007_43_4_a2,
     author = {Antoch, Jarom{\'\i}r and Jaru\v{s}kov\'a, Daniela},
     title = {Testing a homogeneity of stochastic processes},
     journal = {Kybernetika},
     pages = {415--430},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377920},
     zbl = {1135.62066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/}
}
TY  - JOUR
AU  - Antoch, Jaromír
AU  - Jarušková, Daniela
TI  - Testing a homogeneity of stochastic processes
JO  - Kybernetika
PY  - 2007
SP  - 415
EP  - 430
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/
LA  - en
ID  - KYB_2007_43_4_a2
ER  - 
%0 Journal Article
%A Antoch, Jaromír
%A Jarušková, Daniela
%T Testing a homogeneity of stochastic processes
%J Kybernetika
%D 2007
%P 415-430
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/
%G en
%F KYB_2007_43_4_a2
Antoch, Jaromír; Jarušková, Daniela. Testing a homogeneity of stochastic processes. Kybernetika, Tome 43 (2007) no. 4, pp. 415-430. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/

[1] Antoch J., Hušková M.: Estimators of changes. In: Nonparametrics, Asymptotics an Time Series (S. Ghosh, ed.), M. Dekker, New York 1998, pp. 533–578 | MR

[2] Antoch J., Hušková, M., Jarušková D.: Off-line quality control. In: Multivariate Total Quality Control: Foundations and Recent Advances (N. C. Lauro et al. eds.), Springer–Verlag, Heidelberg 2002, pp. 1–86 | MR

[3] Barlow R. E., Proschan F.: Mathematical Theory of Reliability. Wiley, New York 1964 | MR | Zbl

[4] Chernoff H., Zacks S.: Estimating the current mean of normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 (1964), 999–1018 | MR

[5] Cox D. R., Lewis P. A. W.: The Statistical Analysis of Series of Events. Wiley, New York 1966 | MR | Zbl

[6] Csörgő M., Horváth L.: Limit Theorems in Change Point Analysis. Wiley, New York 1997 | MR

[7] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events. Springer–Verlag, Heildelberg 1997 | MR | Zbl

[8] Haccou P., Meelis, E., Geer S. van de: The likelihood ratio test for the change point problem for exponentially distributed random variables. Stochastic Process. Appl. 27 (1988), 121–139 | MR

[9] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Prague 1967 | MR | Zbl

[10] Kander Z., Zacks S.: Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 (1966), 1196–1210 | MR

[11] Kiefer J.: K-sample analogues of the Kolmogorov–Smirnov’s and Cramér–von Mises tests. Ann. Math. Statist. 30 (1960), 420–447 | MR

[12] Kotz S., Balakrishnan, M., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Wiley, New York 2000 | MR | Zbl

[13] Kvaløy J. T., Lindqvist B. H.: TTT-based tests for trend in repairable systems data. Reliability Engineering and System Safety 60 (1998), 13–28

[14] Kvaløy J. T., Lindqvist B. H., Malmedal H.: A statistical test for monotonic and non-monotonic trend in repairable systems. In: Proc. European Conference on Safety and Reliability – ESREL 2001, Torino 2002, pp. 1563–1570

[16] Sigma: Natural Catastrophes and Major Losef in 1995. Sigma Publ. 2 (1995)

[17] Steinebach. J., Eastwood V. R.: On extreme value asymptotics for increments of renewal processes. J. Statist. Plann. Inference 44 (1995) | MR | Zbl

[18] Steinebach J., Eastwood V. R.: Extreme value asymptotics for multivariate renewal processes. J. Multivariate Anal. 56 (1996), 284–302 | MR | Zbl