Keywords: homogeneous and non-homogeneous Poisson process; counting process; change point detection
@article{KYB_2007_43_4_a2,
author = {Antoch, Jarom{\'\i}r and Jaru\v{s}kov\'a, Daniela},
title = {Testing a homogeneity of stochastic processes},
journal = {Kybernetika},
pages = {415--430},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377920},
zbl = {1135.62066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/}
}
Antoch, Jaromír; Jarušková, Daniela. Testing a homogeneity of stochastic processes. Kybernetika, Tome 43 (2007) no. 4, pp. 415-430. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a2/
[1] Antoch J., Hušková M.: Estimators of changes. In: Nonparametrics, Asymptotics an Time Series (S. Ghosh, ed.), M. Dekker, New York 1998, pp. 533–578 | MR
[2] Antoch J., Hušková, M., Jarušková D.: Off-line quality control. In: Multivariate Total Quality Control: Foundations and Recent Advances (N. C. Lauro et al. eds.), Springer–Verlag, Heidelberg 2002, pp. 1–86 | MR
[3] Barlow R. E., Proschan F.: Mathematical Theory of Reliability. Wiley, New York 1964 | MR | Zbl
[4] Chernoff H., Zacks S.: Estimating the current mean of normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 (1964), 999–1018 | MR
[5] Cox D. R., Lewis P. A. W.: The Statistical Analysis of Series of Events. Wiley, New York 1966 | MR | Zbl
[6] Csörgő M., Horváth L.: Limit Theorems in Change Point Analysis. Wiley, New York 1997 | MR
[7] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events. Springer–Verlag, Heildelberg 1997 | MR | Zbl
[8] Haccou P., Meelis, E., Geer S. van de: The likelihood ratio test for the change point problem for exponentially distributed random variables. Stochastic Process. Appl. 27 (1988), 121–139 | MR
[9] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Prague 1967 | MR | Zbl
[10] Kander Z., Zacks S.: Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 (1966), 1196–1210 | MR
[11] Kiefer J.: K-sample analogues of the Kolmogorov–Smirnov’s and Cramér–von Mises tests. Ann. Math. Statist. 30 (1960), 420–447 | MR
[12] Kotz S., Balakrishnan, M., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Wiley, New York 2000 | MR | Zbl
[13] Kvaløy J. T., Lindqvist B. H.: TTT-based tests for trend in repairable systems data. Reliability Engineering and System Safety 60 (1998), 13–28
[14] Kvaløy J. T., Lindqvist B. H., Malmedal H.: A statistical test for monotonic and non-monotonic trend in repairable systems. In: Proc. European Conference on Safety and Reliability – ESREL 2001, Torino 2002, pp. 1563–1570
[16] Sigma: Natural Catastrophes and Major Losef in 1995. Sigma Publ. 2 (1995)
[17] Steinebach. J., Eastwood V. R.: On extreme value asymptotics for increments of renewal processes. J. Statist. Plann. Inference 44 (1995) | MR | Zbl
[18] Steinebach J., Eastwood V. R.: Extreme value asymptotics for multivariate renewal processes. J. Multivariate Anal. 56 (1996), 284–302 | MR | Zbl