Keywords: finite element method; Darcy’s flow; fractured porous medium
@article{KYB_2007_43_4_a16,
author = {\v{S}embera, Jan and Mary\v{s}ka, Ji\v{r}{\'\i} and Kr\'alovcov\'a, Ji\v{r}ina and Sever\'yn, Otto},
title = {A novel approach to modelling of flow in fractured porous medium},
journal = {Kybernetika},
pages = {577--588},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377934},
zbl = {1220.76042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a16/}
}
TY - JOUR AU - Šembera, Jan AU - Maryška, Jiří AU - Královcová, Jiřina AU - Severýn, Otto TI - A novel approach to modelling of flow in fractured porous medium JO - Kybernetika PY - 2007 SP - 577 EP - 588 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a16/ LA - en ID - KYB_2007_43_4_a16 ER -
Šembera, Jan; Maryška, Jiří; Královcová, Jiřina; Severýn, Otto. A novel approach to modelling of flow in fractured porous medium. Kybernetika, Tome 43 (2007) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a16/
[1] Bogdanov I. I., Mourzenko V. V., Thovert J. F., Adler P. M.: Effective permeability of fractured porous media in steady state flow. Water Res. Research 39 (2003), 1023–1038
[2] Diodato D. M.: Compendium of Fracture Flow Models. Center for Environmental Restoration Systems, Energy Systems Division, Argonne National Laboratory, USA 1994. Available on: http://www.thehydrogeologist.com/docs/cffm/cffmtoc.htm
[3] Kaasschieter E. F., Huijben A. J. M.: Mixed-hybrid finite elements and streamline computation for the potential flow problem. Numer. Methods Partial Differential Equations 8 (1992), 221–266 | DOI | MR | Zbl
[4] Maryška J.: Approximation of the Mixed-hybrid Formulation of the Porous Media Flow Problem (in Czech). Technical Report No. 609, Institute of Computer Science of the Academy of Sciences of the Czech Republic, Prague 1995
[5] Maryška J., Rozložník, M., Tůma M.: Mixed-hybrid finite-element approximation of the potential fluid-flow problem. J. Comput. Appl. Math. 63 (1995), 383–392 | DOI | MR | Zbl
[6] Maryška J., Rozložník, M., Tůma M.: Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem. SIAM J. Sci. Comput. 22 (2000), 704–723 | DOI | MR | Zbl
[7] Maryška J., Severýn, O., Vohralík M.: Mixed-hybrid finite elements and streamline computation for the potential flow problem. Computational Geosciences 18 (2005), 8/3, 217–234
[8] Vohralík M., Maryška, J., Severýn O.: Mixed and nonconforming finite element methods on a system of polygons. To appear in Appl. Numer. Math | MR | Zbl