On one approach to local surface smoothing
Kybernetika, Tome 43 (2007) no. 4, pp. 533-546 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.
A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.
Classification : 41A10, 62J05, 65D17, 93E14, 93E24
Keywords: data smoothing; least squares and related methods; linear regression; approximation by polynomials; interpolation; computer aided design (modeling of curves and surfaces); surface approximation
@article{KYB_2007_43_4_a13,
     author = {Dikoussar, Nikolay and T\"or\"ok, Csaba},
     title = {On one approach to local surface smoothing},
     journal = {Kybernetika},
     pages = {533--546},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377931},
     zbl = {1139.65009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a13/}
}
TY  - JOUR
AU  - Dikoussar, Nikolay
AU  - Török, Csaba
TI  - On one approach to local surface smoothing
JO  - Kybernetika
PY  - 2007
SP  - 533
EP  - 546
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a13/
LA  - en
ID  - KYB_2007_43_4_a13
ER  - 
%0 Journal Article
%A Dikoussar, Nikolay
%A Török, Csaba
%T On one approach to local surface smoothing
%J Kybernetika
%D 2007
%P 533-546
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a13/
%G en
%F KYB_2007_43_4_a13
Dikoussar, Nikolay; Török, Csaba. On one approach to local surface smoothing. Kybernetika, Tome 43 (2007) no. 4, pp. 533-546. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a13/

[1] Ahlberg J. H., Nilson E. N. L.Walsh J.: The Theory of Splines and Their Applications. Academic Press, New York 1967 | MR | Zbl

[2] Davydov O., Zeilfelder F.: Scattered data fitting by direct extension of local polynomials with bivariate splines. Adv. Comp. Math. 21 (2004), 223–271 | MR

[3] Boor C. de: Bicubic spline interpolation. J. Math. Phys. 41 (1962), 212–218 | MR | Zbl

[4] Dikoussar N. D.: Function parametrization by using 4-point transforms. Comput. Phys. Comm. 99 (1997), 235–254 | Zbl

[5] Dikoussar N. D.: Adaptive projective filters for track finding. Comput. Phys. Comm. 79 (1994), 39–51

[6] Dikoussar N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation. Math. Model. T-18 (2006), 3, 23–40 | MR | Zbl

[8] Farin G. E.: Triangular Bernstein–Bezier patches. Comput. Aided Geom. Design 3 (1986), 2, 83–127 | MR

[9] Farin G.: History of curves and surfaces in CAGD. In: Handbook of CAGD (G. Farin, M. S. Kim and J. Hoschek, eds.), North Holland, Amsterdam 2002 | MR

[10] Härdle W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge 1990 | MR | Zbl

[11] Loader C.: Smoothing: Local regression techniques In: Handbook of Computational Statistics (J. E. Gentle et al., eds.), Springer–Verlag, Berlin 2004 | MR

[12] Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, New York 1999 | MR | Zbl

[13] Riplay B. D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge 1996 | MR

[14] Seber G. A.: Linear Regression Analysis. Wiley, New York 1977 | MR | Zbl

[15] Török, Cs.: 4-point transforms and approximation. Comput. Phys. Comm. 125 (2000), 154–166

[16] Török, Cs., Dikoussar N. D.: Approximation with discrete projective transformation. Comput. Math. Appl. 38 (1999), 211–220 | MR | Zbl

[17] Török, Cs., Kepič T.: Data compression based on auto-tracking piecewise cubic approximation and wavelets. In: SICAM Plovdiv 2005, p. 274

[18] Wahba G.: Spline Models for Observational Data. SIAM, Philadelphia 1990 | MR | Zbl