Perona-Malik equation: properties of explicit finite volume scheme
Kybernetika, Tome 43 (2007) no. 4, pp. 523-532 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Perona–Malik nonlinear parabolic problem, which is widely used in image processing, is investigated in this paper from the numerical point of view. An explicit finite volume numerical scheme for this problem is presented and consistency property is proved.
The Perona–Malik nonlinear parabolic problem, which is widely used in image processing, is investigated in this paper from the numerical point of view. An explicit finite volume numerical scheme for this problem is presented and consistency property is proved.
Classification : 35K20, 35K55, 65M12, 65M60, 68M10
Keywords: Perona–Malik equation; finite volume method; consistency; stability monotonicity property
@article{KYB_2007_43_4_a12,
     author = {Handlovi\v{c}ov\'a, Angela},
     title = {Perona-Malik equation: properties of explicit finite volume scheme},
     journal = {Kybernetika},
     pages = {523--532},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377930},
     zbl = {1140.35321},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/}
}
TY  - JOUR
AU  - Handlovičová, Angela
TI  - Perona-Malik equation: properties of explicit finite volume scheme
JO  - Kybernetika
PY  - 2007
SP  - 523
EP  - 532
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/
LA  - en
ID  - KYB_2007_43_4_a12
ER  - 
%0 Journal Article
%A Handlovičová, Angela
%T Perona-Malik equation: properties of explicit finite volume scheme
%J Kybernetika
%D 2007
%P 523-532
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/
%G en
%F KYB_2007_43_4_a12
Handlovičová, Angela. Perona-Malik equation: properties of explicit finite volume scheme. Kybernetika, Tome 43 (2007) no. 4, pp. 523-532. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/

[1] Barles G., Souganidis P. E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991), 271–283 | MR | Zbl

[2] Catté F. , Lions P. L., Morel J. M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992), 182–193 | MR | Zbl

[3] Eymard R., Gallouet, T., Herbin R.: The Finite Volume Method. In: Handbook of Numerical Analysis, Vol. VII, 2000 (Ph. Ciarlet and J. L. Lions, eds.), pp. 715–1022 | MR | Zbl

[4] Handlovičová A., Krivá Z.: Properties of explicit finite volume scheme for Perona–Malik Equation. In: Proc. Prastan 04, Kočovce 2004, pp. 133–140

[5] Handlovičová A., Krivá Z.: Error estimates for finite volume scheme for Perona–Malik Equation. Acta Math. Univ. Comenianae LXXIV 1 (2005), 79–94 | MR | Zbl

[6] Handlovičová A., Mikula K.: Convergence of the semi-implicit co-volume scheme for the curvature driven level set equation. To appear

[7] Krivá Z.: Explicit finite volume scheme for the Perona–Malik equation. Computational Methods in Applied Math. 5 (2005), 2, 170–200

[8] Krivá Z., Mikula K.: An adaptive finie volume scheme for solving nonlinear diffusion equations in image processing. J. Visual. Comm. and Image Representation 13 (2002), 22–35

[9] Mikula K., Ramarosy N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 3, 561–590 | MR | Zbl