Keywords: Perona–Malik equation; finite volume method; consistency; stability monotonicity property
@article{KYB_2007_43_4_a12,
author = {Handlovi\v{c}ov\'a, Angela},
title = {Perona-Malik equation: properties of explicit finite volume scheme},
journal = {Kybernetika},
pages = {523--532},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377930},
zbl = {1140.35321},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/}
}
Handlovičová, Angela. Perona-Malik equation: properties of explicit finite volume scheme. Kybernetika, Tome 43 (2007) no. 4, pp. 523-532. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a12/
[1] Barles G., Souganidis P. E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991), 271–283 | MR | Zbl
[2] Catté F. , Lions P. L., Morel J. M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992), 182–193 | MR | Zbl
[3] Eymard R., Gallouet, T., Herbin R.: The Finite Volume Method. In: Handbook of Numerical Analysis, Vol. VII, 2000 (Ph. Ciarlet and J. L. Lions, eds.), pp. 715–1022 | MR | Zbl
[4] Handlovičová A., Krivá Z.: Properties of explicit finite volume scheme for Perona–Malik Equation. In: Proc. Prastan 04, Kočovce 2004, pp. 133–140
[5] Handlovičová A., Krivá Z.: Error estimates for finite volume scheme for Perona–Malik Equation. Acta Math. Univ. Comenianae LXXIV 1 (2005), 79–94 | MR | Zbl
[6] Handlovičová A., Mikula K.: Convergence of the semi-implicit co-volume scheme for the curvature driven level set equation. To appear
[7] Krivá Z.: Explicit finite volume scheme for the Perona–Malik equation. Computational Methods in Applied Math. 5 (2005), 2, 170–200
[8] Krivá Z., Mikula K.: An adaptive finie volume scheme for solving nonlinear diffusion equations in image processing. J. Visual. Comm. and Image Representation 13 (2002), 22–35
[9] Mikula K., Ramarosy N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 3, 561–590 | MR | Zbl