Keywords: image processing; nonlinear partial differential equations; numerical solution; finite volume method; adaptivity; grid coarsening
@article{KYB_2007_43_4_a11,
author = {Kriv\'a, Zuzana},
title = {Finite-volume level set method and its adaptive version in completing subjective contours},
journal = {Kybernetika},
pages = {509--522},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377929},
zbl = {1140.35323},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a11/}
}
Krivá, Zuzana. Finite-volume level set method and its adaptive version in completing subjective contours. Kybernetika, Tome 43 (2007) no. 4, pp. 509-522. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a11/
[1] Evans L. C., Spruck J.: Motion of level sets by curvature I. In: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, Cambridge 1999 | MR
[2] Handlovičová A., Mikula, K., Sgallari F.: Semi–implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695 | MR | Zbl
[3] Kanizsa G.: Organization in Vision. Hardcover 1979
[4] Krivá Z., Mikula K.: An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. J. Visual Communication and Image Representation 13 (2002), 22–35
[5] Krivá Z., Mikula K.: An adaptive finite volume scheme in processing of color images. In: Proc. ALGORITMY 2000, Conference on Scientific Computing, Podbanské 2000, pp. 174–188
[6] Krivá Z.: Adaptive Finite Volume Methods in Image Processing. Edícia vedeckých prác, STU Bratislava, Stavebná fakulta 2004
[7] Krivá Z.: Segmentation combining approaches based on mean curvature. In: Mathematical Modelling and Analysis 2005, Proc. 10th International Conference MMA2005&CMAM2, Trakai 2005, pp. 433–441 | MR
[8] Mikula K., Sarti,, A, Sgallari F.: Co-volume method for Riemennian mean curvature flow in subjective surface multiscale segmentation. Comput. Visual Sci. 9 (2006), 1, 23–31 | MR
[9] Mikula K., Sarti, A., Sgallari F.: Co-volume level set method in subjective surface based medical image segmentation. In: Handbook of Biomedical Image Analysis, Kluwer Academic/Plenum Publishers, Dordrecht 2005, pp. 583–626
[10] Mikula K., Sarti A.: Parallel co-volume subjective surface method for 3D medical image segmentation. In: Deformable Model (J. Suri, ed.), Springer–Verlag, Berlin 2006, to appear
[11] Osher S., Sethian J. A.: Front propagating with curvature dependent speed: algorithms based on the Hamilton–Jacobi formulation. J. Comput. Phys. 79 (1988), 12–49 | MR
[12] Sarti A., Malladi, R., Sethian J. A.: Subjective surfaces: A method for completing missing boundaries. Proc. Nat. Acad. Sci. U.S.A. 12 (2000), 97, pp. 6258–6263 | MR | Zbl
[13] Sarti A., Citti G.: Subjective surfaces and Riemannian mean curvature flow graphs. Acta Math. Univ. Comenianae 70 (2001), 1, 85–104 | MR
[14] Sarti A., Malladi, R., Sethian J. A.: Subjective surfaces: A geometric model for boundary completion. Internat. J. Computer Vision 46 (2002), 3, 201–221 | Zbl
[15] Sethian J. A.: Numerical algorithm for propagating interfaces: Hamilton–Jacobi equations and conservation laws. J. Diff. Geom. 31 (1990), 131–161 | MR
[16] Sethian J. A.: Level set methods and fast marching methods. In: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, Cambridge 1999 | MR | Zbl
[17] Walkington N. J.: Algorithms for computing motion by mean curvature. In: SIAM J. Numer. Anal. 33 (1996), 6, 2215–2238 | MR | Zbl