Keywords: SIR epidemic models; stochastic differential equations; weak solution; simulation
@article{KYB_2007_43_4_a1,
author = {\v{S}t\v{e}p\'an, Josef and Hlubinka, Daniel},
title = {Kermack-McKendrick epidemic model revisited},
journal = {Kybernetika},
pages = {395--414},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2377919},
zbl = {1137.37338},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/}
}
Štěpán, Josef; Hlubinka, Daniel. Kermack-McKendrick epidemic model revisited. Kybernetika, Tome 43 (2007) no. 4, pp. 395-414. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/
[1] Allen E. J.: Stochastic differential equations and persistence time for two interacting populations. Dynamics of Continuous, Discrete and Impulsive Systems 5 (1999), 271–281 | MR | Zbl
[2] Allen L. J. S., Kirupaharan N.: Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens. Internat. J. Num. Anal. Model. 2 (2005), 329–344 | MR | Zbl
[3] Andersson H., Britton T.: Stochastic Epidemic Models and Their Statistical Analysis. (Lecture Notes in Statistics 151.) Springer–Verlag, New York 2000 | MR | Zbl
[4] Bailey N. T. J.: The Mathematical Theory of Epidemics. Hafner Publishing Comp., New York 1957 | MR
[5] Ball F., O’Neill P.: A modification of the general stochastic epidemic motivated by AIDS modelling. Adv. in Appl. Prob. 25 (1993), 39–62 | MR | Zbl
[6] Becker N. G.: Analysis of infectious disease data. Chapman and Hall, London 1989 | MR | Zbl
[7] Daley D. J., Gani J.: Epidemic Modelling; An Introduction. Cambridge University Press, Cambridge 1999 | MR | Zbl
[8] Greenhalgh D.: Stochastic Processes in Epidemic Modelling and Simulation. In: Handbook of Statistics 21 (D. N. Shanbhag and C. R. Rao, eds.), North–Holland, Amsterdam 2003, pp. 285–335 | MR | Zbl
[9] Hurt J.: Mathematica$^{®}$ program for Kermack–McKendrick model. Department of Probability and Statistics, Charles University in Prague 2005
[10] Kallenberg O.: Foundations of Modern Probability. Second edition. Springer–Verlag, New York 2002 | MR | Zbl
[11] Kendall D. G.: Deterministic and stochastic epidemics in closed population. In: Proc. Third Berkeley Symp. Math. Statist. Probab. 4, Univ. of California Press, Berkeley, Calif. 1956, pp. 149–165 | MR
[12] Kermack W. O., McKendrick A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London Ser. A 115 (1927), 700–721
[13] Kirupaharan N.: Deterministic and Stochastic Epidemic Models with Multiple Pathogens. PhD Thesis, Texas Tech. Univ., Lubbock 2003 | MR | Zbl
[14] Kirupaharan N., Allen L. J. S.: Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bull. Math. Biol. 66 (2004), 841–864 | MR
[15] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Vol. 1: Foundations. Cambridge University Press, Cambridge 2000 | MR | Zbl
[16] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Vol. 2: Itô Calculus. Cambridge University Press, Cambridge 2000 | MR | Zbl
[17] Štěpán J., Dostál P.: The $dX(t)=Xb(X)dt + X\sigma (X)\,dW$ equation and financial mathematics I. Kybernetika 39 (2003), 653–680 | MR
[18] Štěpán J., Dostál P.: The $dX(t)=Xb(X)dt + X\sigma (X)dW$ equation and financial mathematics II. Kybernetika 39 (2003), 681–701 | MR
[19] Subramaniam R., Balachandran, K., Kim J. K.: Existence of solution of a stochastic integral equation with an application from the theory of epidemics. Nonlinear Funct. Anal. Appl. 5 (2000), 23–29 | MR