Kermack-McKendrick epidemic model revisited
Kybernetika, Tome 43 (2007) no. 4, pp. 395-414 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper proposes a stochastic diffusion model for the spread of a susceptible-infective-removed Kermack–McKendric epidemic (M1) in a population which size is a martingale $N_t$ that solves the Engelbert–Schmidt stochastic differential equation (). The model is given by the stochastic differential equation (M2) or equivalently by the ordinary differential equation (M3) whose coefficients depend on the size $N_t$. Theorems on a unique strong and weak existence of the solution to (M2) are proved and computer simulations performed.
This paper proposes a stochastic diffusion model for the spread of a susceptible-infective-removed Kermack–McKendric epidemic (M1) in a population which size is a martingale $N_t$ that solves the Engelbert–Schmidt stochastic differential equation (). The model is given by the stochastic differential equation (M2) or equivalently by the ordinary differential equation (M3) whose coefficients depend on the size $N_t$. Theorems on a unique strong and weak existence of the solution to (M2) are proved and computer simulations performed.
Classification : 34F05, 37N25, 60H10, 60H35, 92D25
Keywords: SIR epidemic models; stochastic differential equations; weak solution; simulation
@article{KYB_2007_43_4_a1,
     author = {\v{S}t\v{e}p\'an, Josef and Hlubinka, Daniel},
     title = {Kermack-McKendrick epidemic model revisited},
     journal = {Kybernetika},
     pages = {395--414},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2377919},
     zbl = {1137.37338},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Hlubinka, Daniel
TI  - Kermack-McKendrick epidemic model revisited
JO  - Kybernetika
PY  - 2007
SP  - 395
EP  - 414
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/
LA  - en
ID  - KYB_2007_43_4_a1
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Hlubinka, Daniel
%T Kermack-McKendrick epidemic model revisited
%J Kybernetika
%D 2007
%P 395-414
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/
%G en
%F KYB_2007_43_4_a1
Štěpán, Josef; Hlubinka, Daniel. Kermack-McKendrick epidemic model revisited. Kybernetika, Tome 43 (2007) no. 4, pp. 395-414. http://geodesic.mathdoc.fr/item/KYB_2007_43_4_a1/

[1] Allen E. J.: Stochastic differential equations and persistence time for two interacting populations. Dynamics of Continuous, Discrete and Impulsive Systems 5 (1999), 271–281 | MR | Zbl

[2] Allen L. J. S., Kirupaharan N.: Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens. Internat. J. Num. Anal. Model. 2 (2005), 329–344 | MR | Zbl

[3] Andersson H., Britton T.: Stochastic Epidemic Models and Their Statistical Analysis. (Lecture Notes in Statistics 151.) Springer–Verlag, New York 2000 | MR | Zbl

[4] Bailey N. T. J.: The Mathematical Theory of Epidemics. Hafner Publishing Comp., New York 1957 | MR

[5] Ball F., O’Neill P.: A modification of the general stochastic epidemic motivated by AIDS modelling. Adv. in Appl. Prob. 25 (1993), 39–62 | MR | Zbl

[6] Becker N. G.: Analysis of infectious disease data. Chapman and Hall, London 1989 | MR | Zbl

[7] Daley D. J., Gani J.: Epidemic Modelling; An Introduction. Cambridge University Press, Cambridge 1999 | MR | Zbl

[8] Greenhalgh D.: Stochastic Processes in Epidemic Modelling and Simulation. In: Handbook of Statistics 21 (D. N. Shanbhag and C. R. Rao, eds.), North–Holland, Amsterdam 2003, pp. 285–335 | MR | Zbl

[9] Hurt J.: Mathematica$^{®}$ program for Kermack–McKendrick model. Department of Probability and Statistics, Charles University in Prague 2005

[10] Kallenberg O.: Foundations of Modern Probability. Second edition. Springer–Verlag, New York 2002 | MR | Zbl

[11] Kendall D. G.: Deterministic and stochastic epidemics in closed population. In: Proc. Third Berkeley Symp. Math. Statist. Probab. 4, Univ. of California Press, Berkeley, Calif. 1956, pp. 149–165 | MR

[12] Kermack W. O., McKendrick A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London Ser. A 115 (1927), 700–721

[13] Kirupaharan N.: Deterministic and Stochastic Epidemic Models with Multiple Pathogens. PhD Thesis, Texas Tech. Univ., Lubbock 2003 | MR | Zbl

[14] Kirupaharan N., Allen L. J. S.: Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bull. Math. Biol. 66 (2004), 841–864 | MR

[15] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Vol. 1: Foundations. Cambridge University Press, Cambridge 2000 | MR | Zbl

[16] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Vol. 2: Itô Calculus. Cambridge University Press, Cambridge 2000 | MR | Zbl

[17] Štěpán J., Dostál P.: The $dX(t)=Xb(X)dt + X\sigma (X)\,dW$ equation and financial mathematics I. Kybernetika 39 (2003), 653–680 | MR

[18] Štěpán J., Dostál P.: The $dX(t)=Xb(X)dt + X\sigma (X)dW$ equation and financial mathematics II. Kybernetika 39 (2003), 681–701 | MR

[19] Subramaniam R., Balachandran, K., Kim J. K.: Existence of solution of a stochastic integral equation with an application from the theory of epidemics. Nonlinear Funct. Anal. Appl. 5 (2000), 23–29 | MR