Keywords: max-plus algebra; control; monotonicity; positive invariance; residuation; duality
@article{KYB_2007_43_3_a7,
author = {Ahmane, Mourad and Truffet, Laurent},
title = {Idempotent versions of {Haar{\textquoteright}s} {Lemma:} links between comparison of discrete event systems with different state spaces and control},
journal = {Kybernetika},
pages = {369--391},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2362725},
zbl = {1132.93029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a7/}
}
TY - JOUR AU - Ahmane, Mourad AU - Truffet, Laurent TI - Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control JO - Kybernetika PY - 2007 SP - 369 EP - 391 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a7/ LA - en ID - KYB_2007_43_3_a7 ER -
%0 Journal Article %A Ahmane, Mourad %A Truffet, Laurent %T Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control %J Kybernetika %D 2007 %P 369-391 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a7/ %G en %F KYB_2007_43_3_a7
Ahmane, Mourad; Truffet, Laurent. Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control. Kybernetika, Tome 43 (2007) no. 3, pp. 369-391. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a7/
[1] Ahmane M., Ledoux, J., Truffet L.: Criteria for the comparison of discrete-time Markov chains. In: 13th Internat. Workshop on Matrices and Statistics in Celebration of I. Olkin’s 80th Birthday, Poland, August 18-21, 2004
[2] Ahmane M., Ledoux, J., Truffet L.: Positive invariance of polyhedrons and comparison of Markov reward models with different state spaces. In: Proc. Positive Systems: Theory and Applications (POSTA’06), Grenoble 2006 (Lecture Notes in Control and Information Sciences 341), Springer–Verlag, Berlin, pp. 153–160 | MR | Zbl
[3] Ahmane M., Truffet L.: State feedback control via positive invariance for max-plus linear systems using $\Gamma $-algorithm. In: 11th IEEE Internat. Conference on Emerging Technologies and Factory Automation, ETFA’06, Prague 2006
[4] Ahmane M., Truffet L.: Sufficient condition of max-plus ellipsoidal invariant set and computation of feedback control of discrete events systems. In: 3rd Internat. Conference on Informatics in Control, Automation and Robotics, ICINCO’06, Setubal 2006
[5] Aubin J.-P.: Viability Theory. Birkhäuser, Basel 1991 | MR
[6] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P.: Synchronization and Linearity. Wiley, New York 1992 | MR | Zbl
[7] Bertsekas D. P., Rhodes I. B.: On the minimax reachability of target sets and target tubes. Automatica 7 (1971), 233–247 | MR | Zbl
[8] Blyth T. S., Janowitz M. F.: Residuation Theory. Pergamon Press, 1972 | MR | Zbl
[9] Braker J. G.: Max-algebra modelling and analysis of time-table dependent networks. In: Proc. 1st European Control Conference, Grenoble 1991, pp. 1831–1836
[10] Butkovic P., Zimmermann K.: A strongly polynomial algorithm for solving two-wided linear systems in max-algebra. Discrete Appl. Math. 154 (2006), 437–446 | MR
[11] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions. Dynamics Stability Systems 14 (1999), 4, 407–433 | MR | Zbl
[12] Cohen G., Gaubert, S., Quadrat J.-P.: Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395–422 | MR | Zbl
[13] Costan A., Gaubert S., Goubault, E., Putot S.: A policy iteration algorithm for computing fixed points in static analysis of programs. In: CAV’05, Edinburgh 2005 (Lecture Notes in Computer Science 3576), Springer–Verlag, Berlin, pp. 462–475 | Zbl
[14] Cuninghame-Green R. A., Butkovic P.: The equation $A \otimes x= B \otimes y$ over $(\max ,+)$. Theoret. Comp. Sci. 293 (2003), 3–12 | MR | Zbl
[15] Vries R. de, Schutter, B. De, Moor B. De: On max-algebraic models for transportation networks. In: Proc. Internat. Workshop on Discrete Event Systems (WODES’98), Cagliari 1998, pp. 457–462
[16] Farkas J.: Über der einfachen Ungleichungen. J. Reine Angew. Math. 124 (1902), 1–27
[17] Gaubert S., Gunawardena J.: The duality theorem for min-max functions. Comptes Rendus Acad. Sci. 326 (1999), Série I, 43–48 | MR
[18] Gaubert S., Katz R.: Rational semimodules over the max-plus semiring and geometric approach of discrete event systems. Kybernetika 40 (2004), 2, 153–180 | MR
[19] Golan J. S.: The theory of semirings with applications in mathematics and theoretical computer science. Longman Sci. & Tech. 54 (1992) | MR | Zbl
[20] Haar A.: Über Lineare Ungleichungen. 1918. Reprinted in: A. Haar, Gesammelte Arbeiten, Akademi Kiadó, Budapest 1959
[21] Hennet J. C.: Une Extension du Lemme de Farkas et Son Application au Problème de Régulation Linéaire sous Contraintes. Comptes Rendus Acad. Sci. 308 (1989), Série I, pp. 415–419 | MR
[22] Hiriart-Urruty J.-B., Lemarechal C.: Fundamentals of Convex Analysis. Springer–Verlag, Berlin 2001 | MR | Zbl
[23] Katz R. D.: Max-plus (A,B)-invariant and control of discrete event systems. To appear in IEEE TAC, 2005, arXiv:math.OC/0503448
[24] Klimann I.: A solution to the problem of (A,B)-invariance for series. Theoret. Comput. Sci. 293 (2003), 1, 115–139 | MR | Zbl
[25] Ledoux J., Truffet L.: Comparison and aggregation of max-plus linear systems. Linear Algebra. Appl. 378 (2004), 1, 245–272 | MR | Zbl
[26] Lhommeau M.: Etude de Systèmes à Evénements Discrets: 1. Synthèse de Correcteurs Robustes dans un Dioide d’Intervalles. 2. Synthèse de Correcteurs en Présence de Perturbations. PhD Thesis, Université d’Angers ISTIA 2003
[27] Lhommeau M., Hardouin, L., Cottenceau B.: Optimal control for (Max,+)-linear systems in the presence of disturbances. In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin, pp. 47–54 | MR | Zbl
[28] Muller A., Stoyan D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York 2002 | MR
[29] Dam A. A. ten, Nieuwenhuis J. W.: A linear programming algorithm for invariant polyhedral sets of discrete-time linear systems. Systems Control Lett. 25 (1995), 337–341 | MR
[30] Truffet L.: Monotone linear dynamical systems over dioids. In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin pp. 39–46 | MR | Zbl
[31] Truffet L.: Some ideas to compare Bellman chains. Kybernetika 39 (2003), 2, 155–163. (Special Issue on max-plus Algebra) | MR
[32] Truffet L.: Exploring positively invariant sets by linear systems over idempotent semirings. IMA J. Math. Control Inform. 21 (2004), 307–322 | MR | Zbl
[33] Truffet L.: New bounds for timed event graphs inspired by stochastic majorization results. Discrete Event Dyn. Systems 14 (2004), 355–380 | MR | Zbl
[34] Wagneur E.: Duality in the max-algebra. In: IFAC, Commande et Structures des Systèmes, Nantes 1998, pp. 707–711