Keywords: monotone minimizer in an optimization problem; Markov control process; total discounted cost; average cost; monotone optimal policy
@article{KYB_2007_43_3_a6,
author = {Flores{\textendash}Hern\'andez, Rosa M. and Montes-de-Oca, Ra\'ul},
title = {Monotonicity of minimizers in optimization problems with applications to {Markov} control processes},
journal = {Kybernetika},
pages = {347--368},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2362724},
zbl = {1170.90513},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a6/}
}
TY - JOUR AU - Flores–Hernández, Rosa M. AU - Montes-de-Oca, Raúl TI - Monotonicity of minimizers in optimization problems with applications to Markov control processes JO - Kybernetika PY - 2007 SP - 347 EP - 368 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a6/ LA - en ID - KYB_2007_43_3_a6 ER -
Flores–Hernández, Rosa M.; Montes-de-Oca, Raúl. Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika, Tome 43 (2007) no. 3, pp. 347-368. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a6/
[1] Ash R. B.: Real Variables with Basic Metric Space Topology. IEEE Press, New York 1993 | MR | Zbl
[2] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415–436 | MR | Zbl
[3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: Pointwise approximations of discounted Markov decision processes to optimal policies. Internat. J. Pure Appl. Math. 28 (2006), 265–281 | MR | Zbl
[4] Fu M. C., Marcus S. I., Wang, I-J: Monotone optimal policies for a transient queueing staffing problem. Oper. Res. 48 (2000), 327–331
[5] Gallish E.: On monotone optimal policies in a queueing model of M/G/1 type with controllable service time distribution. Adv. in Appl. Probab. 11 (1979), 870–887 | MR
[6] Hernández-Lerma O., Lasserre J. B.: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996 | MR | Zbl
[7] Heyman D. P., Sobel M. J.: Stochastic Models in Operations Research, Vol. II. Stochastic Optimization. McGraw-Hill, New York 1984 | Zbl
[8] Hinderer K., Stieglitz M.: Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: The continuous and the discrete case. Math. Methods Oper. Res. 44 (1996), 189–204 | MR | Zbl
[9] Kalin D.: A note on ‘monotone optimal policies for Markov decision processes’. Math. Programming 15 (1978), 220–222 | MR | Zbl
[10] Mendelssohn R., Sobel M.: Capital accumulation and the optimization of renewable resource models. J. Econom. Theory 23 (1980), 243–260 | Zbl
[11] Pittenger A. O.: Monotonicity in a Markov decision process. Math. Oper. Res. 13 (1988), 65–73 | MR | Zbl
[12] Porteus E. L.: Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, Calif. 2002
[13] Puterman M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York 1994 | MR | Zbl
[14] Rieder U.: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115–131 | MR | Zbl
[15] Ross S. M.: Introduction to Stochastic Dynamic Programming. Academic Press, San Diego 1983 | MR | Zbl
[16] Serfozo R. F.: Monotone optimal policies for Markov decision processes. Math. Programming Stud. 6 (1976), 202–215 | MR | Zbl
[17] Stidham, Sh., Weber R. R.: Monotonic and insensitive optimal policies for control of queues with undiscounted costs. Oper. Res. 37 (1989), 611–625 | MR | Zbl
[18] Stromberg K. R.: An Introduction to Classical Real Analysis. Wadsworth International Group, Belmont 1981 | MR | Zbl
[19] Sundaram R. K.: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996 | MR | Zbl
[20] Topkis D. M.: Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305–321 | MR | Zbl
[21] Topkis D. M.: Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1988 | MR