An atomic MV-effect algebra with non-atomic center
Kybernetika, Tome 43 (2007) no. 3, pp. 343-346 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.
Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.
Classification : 03G12, 06C15, 06D35, 81P10
Keywords: lattice effect algebra; MV-effect algebra; Archimedean effect algebra; sharp element; central element; atom
@article{KYB_2007_43_3_a5,
     author = {Olej\v{c}ek, Vladim{\'\i}r},
     title = {An atomic {MV-effect} algebra with non-atomic center},
     journal = {Kybernetika},
     pages = {343--346},
     year = {2007},
     volume = {43},
     number = {3},
     mrnumber = {2362723},
     zbl = {1149.06006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/}
}
TY  - JOUR
AU  - Olejček, Vladimír
TI  - An atomic MV-effect algebra with non-atomic center
JO  - Kybernetika
PY  - 2007
SP  - 343
EP  - 346
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/
LA  - en
ID  - KYB_2007_43_3_a5
ER  - 
%0 Journal Article
%A Olejček, Vladimír
%T An atomic MV-effect algebra with non-atomic center
%J Kybernetika
%D 2007
%P 343-346
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/
%G en
%F KYB_2007_43_3_a5
Olejček, Vladimír. An atomic MV-effect algebra with non-atomic center. Kybernetika, Tome 43 (2007) no. 3, pp. 343-346. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/

[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Math. Soc. 88 (1958), 467–490 | MR | Zbl

[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures Theory. Kluwer Academic Publications, Dordrecht 2000 | MR

[3] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 | MR

[4] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra. Order 12 (1995), 91–106 | MR | Zbl

[5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29

[6] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 | MR | Zbl

[7] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR

[8] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 | MR

[9] Riečanová Z.: Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 2, 143–150 | MR

[10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras. In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317