Keywords: lattice effect algebra; MV-effect algebra; Archimedean effect algebra; sharp element; central element; atom
@article{KYB_2007_43_3_a5,
author = {Olej\v{c}ek, Vladim{\'\i}r},
title = {An atomic {MV-effect} algebra with non-atomic center},
journal = {Kybernetika},
pages = {343--346},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2362723},
zbl = {1149.06006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/}
}
Olejček, Vladimír. An atomic MV-effect algebra with non-atomic center. Kybernetika, Tome 43 (2007) no. 3, pp. 343-346. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a5/
[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Math. Soc. 88 (1958), 467–490 | MR | Zbl
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures Theory. Kluwer Academic Publications, Dordrecht 2000 | MR
[3] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 | MR
[4] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra. Order 12 (1995), 91–106 | MR | Zbl
[5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[6] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 | MR | Zbl
[7] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR
[8] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 | MR
[9] Riečanová Z.: Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 2, 143–150 | MR
[10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras. In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317