Keywords: multivariate Gaussian distribution; positive definite matrices; determinants; principal minors; conditional independence; probabilistic representability; semigraphoids; separation graphoids; gaussoids; covariance selection models; Markov perfectness
@article{KYB_2007_43_3_a4,
author = {Ln\v{e}ni\v{c}ka, Radim and Mat\'u\v{s}, Franti\v{s}ek},
title = {On {Gaussian} conditional independence structures},
journal = {Kybernetika},
pages = {327--342},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2362722},
zbl = {1144.60302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a4/}
}
Lněnička, Radim; Matúš, František. On Gaussian conditional independence structures. Kybernetika, Tome 43 (2007) no. 3, pp. 327-342. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a4/
[1] Cox D., Little, J., O’Shea D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Second Edition. Springer-Verlag, New York 1997 | MR | Zbl
[2] Dawid A. P.: Conditional independence in statistical theory. J. Roy. Statist. Soc. Ser. B 41 (1979), 1–31 | MR | Zbl
[3] Dawid A. P.: Conditional independence for statistical operations. Ann. Statist. 8 (1980), 598–617 | MR | Zbl
[4] Dempster A. P.: Covariance selection. Biometrics 28 (1972), 157–175
[5] Frydenberg M.: Marginalization and collapsibility in graphical interaction models. Ann. Statist. 18 (1990), 790–805 | MR | Zbl
[7] Kauermann G.: On a dualization of graphical Gaussian models. Scand. J. Statist. 23 (1996), 105–116 | MR | Zbl
[8] Kurosh A.: Higher Algebra. Mir Publishers, Moscow 1975 | MR | Zbl
[9] Lauritzen S. L.: Graphical Models. (Oxford Statistical Science Series 17.) Oxford University Press, New York 1996 | MR | Zbl
[10] Levitz M., Perlman M. D., Madigan D.: Separation and completeness properties for AMP chain graph Markov models. Ann. Statist. 29 (2001), 1751–1784 | MR | Zbl
[11] Lněnička R.: On conditional independences among four Gaussian variables. In: Proc. Conditionals, Information, and Inference – WCII’04 (G. Kern-Isberner, W. Roedder, and F. Kulmann, eds.), Universität Ulm, Ulm 2004, pp. 89–101
[12] Matúš F.: Ascending and descending conditional independence relations. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 189–200
[13] Matúš F.: On equivalence of Markov properties over undirected graphs. J. Appl. Probab. 29 (1992), 745–749 | MR | Zbl
[14] Matúš F.: Conditional independences among four random variables II. Combin. Probab. Comput. 4 (1995), 407–417 | MR | Zbl
[15] Matúš F.: Conditional independence structures examined via minors. Ann. Math. Artif. Intell. 21 (1997), 99–128 | MR | Zbl
[16] Matúš F.: Conditional independences among four random variables III: final conclusion. Combin. Probab. Comput. 8 (1999), 269–276 | MR | Zbl
[17] Matúš F.: Conditional independences in Gaussian vectors and rings of polynomials. In: Proc. Conditionals, Information, and Inference – WCII 2002 (Lecture Notes in Computer Science 3301; G. Kern-Isberner, W. Rödder, and F. Kulmann, eds.), Springer, Berlin 2005, pp. 152–161 | Zbl
[18] Matúš F.: Towards classification of semigraphoids. Discrete Math. 277 (2004), 115–145 | MR | Zbl
[19] Matúš F., Studený M.: Conditional independences among four random variables I. Combin. Probab. Comput. 4 (1995), 269–278 | Zbl
[20] Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, Calif. 1988 | MR | Zbl
[21] Prasolov V. V.: Problems and Theorems in Linear Algebra. (Translations of Mathematical Monographs 134.) American Mathematical Society 1996 | MR | Zbl
[22] Studený M.: Conditional independence relations have no finite complete characterization. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 377–396
[23] Studený M.: Structural semigraphoids. Internat. J. Gen. Syst. 22 (1994), 207–217 | Zbl
[24] Studený M.: Probabilistic Conditional Independence Structures. Springer, London 2005
[26] Šimeček P.: Classes of Gaussian, discrete and binary representable independence models have no finite characterization. In: Prague Stochastics (M. Hušková and M. Janžura, eds.), Matfyzpress, Charles University, Prague 2006, pp. 622–632
[27] Šimeček P.: Gaussian representation of independence models over four random variables. In: Proc. COMPSTAT 2006 – World Conference on Computational Statistics 17 (A. Rizzi and M. Vichi, eds.), Rome 2006, pp. 1405–1412
[28] Whittaker J.: Graphical Models in Applied Multivariate Statistics. Wiley, New York 1990 | MR | Zbl