Test for exponentiality against Weibull and gamma decreasing hazard rate alternatives
Kybernetika, Tome 43 (2007) no. 3, pp. 307-314 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A sub-exponential Weibull random variable may be expressed as a quotient of a unit exponential to an independent strictly positive stable random variable. Based on this property, we propose a test for exponentiality which is consistent against Weibull and Gamma distributions with shape parameter less than unity. A comparison with other procedures is also included.
A sub-exponential Weibull random variable may be expressed as a quotient of a unit exponential to an independent strictly positive stable random variable. Based on this property, we propose a test for exponentiality which is consistent against Weibull and Gamma distributions with shape parameter less than unity. A comparison with other procedures is also included.
Classification : 62F03, 62F05
Keywords: goodness-of-fit test; empirical Laplace transform; likelihood test
@article{KYB_2007_43_3_a2,
     author = {Meintanis, Simos G.},
     title = {Test for exponentiality against {Weibull} and gamma decreasing hazard rate alternatives},
     journal = {Kybernetika},
     pages = {307--314},
     year = {2007},
     volume = {43},
     number = {3},
     mrnumber = {2362720},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a2/}
}
TY  - JOUR
AU  - Meintanis, Simos G.
TI  - Test for exponentiality against Weibull and gamma decreasing hazard rate alternatives
JO  - Kybernetika
PY  - 2007
SP  - 307
EP  - 314
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a2/
LA  - en
ID  - KYB_2007_43_3_a2
ER  - 
%0 Journal Article
%A Meintanis, Simos G.
%T Test for exponentiality against Weibull and gamma decreasing hazard rate alternatives
%J Kybernetika
%D 2007
%P 307-314
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a2/
%G en
%F KYB_2007_43_3_a2
Meintanis, Simos G. Test for exponentiality against Weibull and gamma decreasing hazard rate alternatives. Kybernetika, Tome 43 (2007) no. 3, pp. 307-314. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a2/

[1] Chen, Zhenmin: Statistical inference about the shape parameter of the Weibull distribution. Statist. Probab. Lett. 36 (1997), 85–90 | MR | Zbl

[2] Meintanis S. G.: Omnibus tests for strictly positive stable laws based on the empirical Laplace transform. Math. Meth. Statist. 14 (2005), 468–478 | MR

[3] Rublík F.: Some tests on exponential populations. In: Probastat 1994, Tatra Mountains Math. Publ. 7 (1996), 229–235 | MR

[4] Stehlík M.: The exact LR test of the scale in the Gamma family. In: Probastat 2002, Tatra Mountains Math. Publ. 26 (2003), 381–390 | MR

[5] Stehlík M.: Exact likelihood ratio scale and homogeneity testing of some loss processes. Statist. Probab. Lett. 76 (2006), 19–26 | MR | Zbl

[6] Wong P. G., Wong S. P.: A curtailed test for the shape parameter of the Weibull distribution. Metrika 29 (1982), 203–209 | MR | Zbl