Keywords: pushdown automata; modifications; recursively enumerable languages
@article{KYB_2007_43_3_a0,
author = {Blatn\'y, Petr and Bidlo, Radek and Meduna, Alexander},
title = {Automata with two-sided pushdowns defined over free groups generated by reduced alphabets},
journal = {Kybernetika},
pages = {265--278},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2362718},
zbl = {1135.68027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a0/}
}
TY - JOUR AU - Blatný, Petr AU - Bidlo, Radek AU - Meduna, Alexander TI - Automata with two-sided pushdowns defined over free groups generated by reduced alphabets JO - Kybernetika PY - 2007 SP - 265 EP - 278 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a0/ LA - en ID - KYB_2007_43_3_a0 ER -
Blatný, Petr; Bidlo, Radek; Meduna, Alexander. Automata with two-sided pushdowns defined over free groups generated by reduced alphabets. Kybernetika, Tome 43 (2007) no. 3, pp. 265-278. http://geodesic.mathdoc.fr/item/KYB_2007_43_3_a0/
[1] Jacobson N.: Basic Algebra. Second edition. W. H. Freeman, New York 1989 | MR | Zbl
[2] Kleijn H. C. M., Rozenberg G.: On the generative power of regular pattern grammars. Acta Informatica 20 (1983), 391–411 | MR | Zbl
[3] Aho A. V., Ullman J. D.: The Theory of Parsing, Translation and Compiling. Volume I: Parsing. Prentice Hall, Englewood Cliffs, NJ 1972 | MR
[4] Autebert J., Berstel, J., Boasson L.: Context-Free Languages and Pushdown Automata. In: Handbook of Formal Languages (G. Rozenberg, and A. Salomaa, eds.), Springer, Berlin 1997 | MR
[5] Courcelle B.: On jump deterministic pushdown automata. Math. Systems Theory 11 (1977), 87–109 | MR | Zbl
[6] Greibach S. A.: Checking automata and one-way stack languages. J. Comput. Systems Sci. 3 (1969), 196–217 | MR | Zbl
[7] Ginsburg S., Greibach S. A., Harrison M. A.: One-way stack automata. J. Assoc. Comput. Mach. 14 (1967), 389–418 | MR | Zbl
[8] Ginsburg S., Spanier E.: Finite-turn pushdown automata. SIAM J. Control 4 (1968), 429–453 | MR
[10] Holzer M., Kutrib M.: Flip-pushdown automata: $k+1$ pushdown reversals are better than $k$. In: Languages and Programming – ICALP 2003 (Lecture Notes in Computer Science 2719), Springer, Berlin 2003, pp. 490–501 | MR | Zbl
[11] Lewis H. R., Papadimitriou C. H.: Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, NJ 1981 | Zbl
[12] Martin J. C.: Introduction to Languages and the Theory of Computation. McGraw-Hill, New York 1991 | Zbl
[13] Meduna A.: Automata and Languages: Theory and Applications. Springer, London 2000 | MR | Zbl
[14] Meduna A.: Simultaneously one-turn two-pushdown automata. Internat. Computer Math. 82 (2003), 679–687 | MR | Zbl
[15] Meduna A., Kolář D.: Regulated pushdown automata. Acta Cybernet. 14 (2000), 653–664 | MR | Zbl
[16] Sakarovitch J.: Pushdown automata with terminating languages. In: Languages and Automata Symposium, RIMS 421 (1981), 15–29
[17] Sarkar P.: Pushdown automaton with the ability to flip its stack. TR01-081, Electronic Colloquium on Computational Complexity (ECCC), November 2001
[18] Sudkamp T. A.: Languages and Machines. Addison Wesley, Reading, Mass. 1988
[19] Valiant L.: The equivalence problem for ceterministic finite turn pushdown automata. Inform. and Control 81 (1989), 265–279