Keywords: fuzzy implication; $f$-generated implication; $g$-generated implication; $h$-generated implication; $(S;N)$-implication; $S$-implication; $R$-implication
@article{KYB_2007_43_2_a4,
author = {Baczy\'nski, Micha{\l} and Jayaram, Balasubramaniam},
title = {Yager{\textquoteright}s classes of fuzzy implications: some properties and intersections},
journal = {Kybernetika},
pages = {157--182},
year = {2007},
volume = {43},
number = {2},
mrnumber = {2343393},
zbl = {1132.03330},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a4/}
}
Baczyński, Michał; Jayaram, Balasubramaniam. Yager’s classes of fuzzy implications: some properties and intersections. Kybernetika, Tome 43 (2007) no. 2, pp. 157-182. http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a4/
[1] Baczyński M., Jayaram B.: On the characterizations of $(S,N)$-implications. Fuzzy Sets and Systems 158 (2007), 1713–1727 | MR | Zbl
[2] Balasubramaniam J.: Contrapositive symmetrization of fuzzy implications – Revisited. Fuzzy Sets and Systems 157 (2006), 2291–2310 | MR
[3] Balasubramaniam J.: Yager’s new class of implications $J_f$ and some classical tautologies. Inform. Sci. 177 (2007), 930–946 | MR | Zbl
[4] Dubois D., Prade H.: Fuzzy sets in approximate reasoning. Part I. Inference with possibility distributions. Fuzzy Sets and Systems 40 (1991), 143–202 | MR | Zbl
[5] Fodor J. C., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
[6] Gottwald S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock 2001 | MR | Zbl
[7] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl
[8] Klir G. J., Yuan, Bo: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Englewood Cliffs, N.J. 1995 | MR | Zbl
[9] Pei D.: $R_0$ implication: characteristics and applications. Fuzzy Sets and Systems 131 (2002), 297-302 | MR | Zbl
[10] Trillas E., Valverde L.: On some functionally expressable implications for fuzzy set theory. In: Proc. 3rd Internat. Seminar on Fuzzy Set Theory (E. P. Klement, ed.), Johannes Kepler Universität, Linz 1981, pp. 173–190 | MR | Zbl
[11] Türksen I. B., Kreinovich, V., Yager R. R.: A new class of fuzzy implications – Axioms of fuzzy implication revisited. Fuzzy Sets and Systems 100 (1998), 267–272 | MR | Zbl
[12] Yager R. R.: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193–216 | MR | Zbl