A categorical view at generalized concept lattices
Kybernetika, Tome 43 (2007) no. 2, pp. 255-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We continue in the direction of the ideas from the Zhang’s paper [Z] about a relationship between Chu spaces and Formal Concept Analysis. We modify this categorical point of view at a classical concept lattice to a generalized concept lattice (in the sense of Krajči [K1]): We define generalized Chu spaces and show that they together with (a special type of) their morphisms form a category. Moreover we define corresponding modifications of the image / inverse image operator and show their commutativity properties with mapping defining generalized concept lattice as fuzzifications of Zhang’s ones.
We continue in the direction of the ideas from the Zhang’s paper [Z] about a relationship between Chu spaces and Formal Concept Analysis. We modify this categorical point of view at a classical concept lattice to a generalized concept lattice (in the sense of Krajči [K1]): We define generalized Chu spaces and show that they together with (a special type of) their morphisms form a category. Moreover we define corresponding modifications of the image / inverse image operator and show their commutativity properties with mapping defining generalized concept lattice as fuzzifications of Zhang’s ones.
Classification : 03G10, 06D72, 18D35, 68T30
Keywords: fuzzy concept lattice; Chu space; category theory
@article{KYB_2007_43_2_a11,
     author = {Kraj\v{c}i, Stanislav},
     title = {A categorical view at generalized concept lattices},
     journal = {Kybernetika},
     pages = {255--264},
     year = {2007},
     volume = {43},
     number = {2},
     mrnumber = {2343400},
     zbl = {1132.06300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a11/}
}
TY  - JOUR
AU  - Krajči, Stanislav
TI  - A categorical view at generalized concept lattices
JO  - Kybernetika
PY  - 2007
SP  - 255
EP  - 264
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a11/
LA  - en
ID  - KYB_2007_43_2_a11
ER  - 
%0 Journal Article
%A Krajči, Stanislav
%T A categorical view at generalized concept lattices
%J Kybernetika
%D 2007
%P 255-264
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a11/
%G en
%F KYB_2007_43_2_a11
Krajči, Stanislav. A categorical view at generalized concept lattices. Kybernetika, Tome 43 (2007) no. 2, pp. 255-264. http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a11/

[1] Bělohlávek R.: Fuzzy concepts and conceptual structures: induced similarities. In: Proc. Joint Conference Inform. Sci. ’98, Durham (U.S.A.) 1998, Vol. I, pp. 179–182

[2] Bělohlávek R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128 (2004), 277–298 | MR | Zbl

[3] Bělohlávek R., Sklenář, V., Zacpal J.: Crisply generated fuzzy concepts. In: ICFCA 2005 (B. Ganter and R. Godin, eds., Lecture Notes in Computer Science 3403), Springer–Verlag, Berlin – Heidelberg 2005, pp. 268–283 | Zbl

[4] Bělohlávek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges. In: Proc. FUZZ–IEEE 2005, The IEEE Internat. Conference Fuzzy Systems, Reno 2005, pp. 663–668

[5] Yahia S. Ben, Jaoua A.: Discovering knowledge from fuzzy concept lattice. In: Data Mining and Computational Intelligence (A. Kandel, M. Last, and H. Bunke, eds.), Physica–Verlag, Heidelberg 2001, pp. 169–190

[6] Ganter B., Wille R.: Formal Concept Analysis, Mathematical Foundation. Springer–Verlag, Berlin 1999 | MR

[7] Krajči S.: A generalized concept lattice. Logic J. of the IGPL 13 (2005), 5, 543–550 | MR | Zbl

[8] Krajči S.: The basic theorem on generalized concept lattice. In: Proc. 2nd Internat. Workshop CLA 2004 (V. Snášel and R. Bělohlávek, eds.), Ostrava 2004, pp. 25–33

[9] Krajči S.: Every concept lattice with hedges is isomorphic to some generalized concept lattice. In: Proc. 3nd Internat. Workshop CLA 2004 (R. Bělohlávek and V. Snášel, eds.), Olomouc 2005, pp. 1–9

[10] Krajči S.: Cluster based efficient generation of fuzzy concepts. Neural Network World 13 (2003), 5, 521–530

[11] Pollandt S.: Fuzzy Begriffe. Springer–Verlag, Berlin 1997 | MR | Zbl

[12] Pollandt S.: Datenanalyse mit Fuzzy–Begriffen. In: Begriffliche Wissensverarbeitung, Methoden und Anwendungen (G. Stumme and R. Wille, eds.), Springer–Verlag, Heidelberg 2000, pp. 72–98 | Zbl

[13] Shostak A.: Fuzzy categories versus categories of fuzzily structured sets: Elements of the theory of fuzzy categories. In: Mathematik–Arbeitspapiere N 48: Categorical Methods in Algebra and Topology (A collection of papers in honor of Horst Herrlich, Hans-E. Porst, ed.), Bremen 1977, pp. 407–438

[14] Zhang G. Q.: Chu spaces, concept lattices, and domains. In: Proc. Nineteenth Conference on the Mathematical Foundations of Programming Semantics, Montreal 2003, Electronic Notes in Theoretical Computer Science 83, 2004