Keywords: fuzzy relation; fuzzy relation properties; fuzzy relation classes; $\ast $-transitivity; transitivity; aggregation functions; relation aggregation; triangular norms
@article{KYB_2007_43_2_a1,
author = {Drewniak, J\'ozef and Dudziak, Urszula},
title = {Preservation of properties of fuzzy relations during aggregation processes},
journal = {Kybernetika},
pages = {115--132},
year = {2007},
volume = {43},
number = {2},
mrnumber = {2343390},
zbl = {1135.68050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a1/}
}
Drewniak, Józef; Dudziak, Urszula. Preservation of properties of fuzzy relations during aggregation processes. Kybernetika, Tome 43 (2007) no. 2, pp. 115-132. http://geodesic.mathdoc.fr/item/KYB_2007_43_2_a1/
[1] Bezdek J. C., Harris J. D.: Fuzzy partitions and relations: an axiomatic basis for clustering. Fuzzy Sets and Systems 1 (1978), 111–127 | MR | Zbl
[2] Bodenhofer U.: A Similarity–Based Generalization of Fuzzy Orderings. PhD Thesis. Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo et al., ed.), Physica–Verlag, Heildelberg 2002, pp. 3–104 | MR | Zbl
[4] Baets B. De, Mesiar R.: T-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | MR | Zbl
[5] Chiclana F., Herrera F., Herrera-Viedma, E., Martínez L.: A note on the reciprocity in the aggregation of fuzzy preference relations using OWA oprators. Fuzzy Sets and Systems 137 (2003), 71–83 | MR
[6] Drewniak J.: Fuzzy Relation Calculus. Silesian University, Katowice 1989 | MR | Zbl
[7] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Baets et al., ed.), EXIT, Warszawa 2004, pp. 195–203
[8] Drewniak J., Dudziak U.: Aggregations preserving classes of fuzzy relations. Kybernetika 41 (2005), 3, 265–284 | MR
[9] Drewniak J., Dudziak U.: Aggregations in classes of fuzzy relations. Ann. Acad. Paed. Cracoviensis 33, Studia Math. 5 (2006), 33–43 | MR | Zbl
[10] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Spport. Kluwer Academic Publishers, Dordrecht 1994
[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[12] Marichal J. L.: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Math. 59 (2000), 74–83 | MR | Zbl
[13] Ovchinnikov S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 107–126 | MR | Zbl
[14] Peneva V., Popchev I.: Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 | MR
[15] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633 | MR | Zbl
[16] Peneva V., Popchev I.: Transformations by parameterized t-norms preserving the properties of fuzzy relations. C. R. Acad. Bulgare Sci. 57 (2004), 10, 9–18 | MR | Zbl
[17] Peneva V., Popchev I.: Aggregation of fuzzy preference relations with different importance. C. R. Acad. Bulgare Sci. 58 (2005), 5, 499–506 | Zbl
[18] Peneva V., Popchev I.: Aggregation of fuzzy preference relations by composition. C. R. Acad. Bulgare Sci. 59 (2006), 4, 373–380 | MR | Zbl
[19] Roubens M., Vincke P.: Preference Modelling. Springer–Verlag, Berlin 1985 | MR | Zbl
[20] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertainty, Fuzziness, Knowledge–Based Systems 10 (2002), 11–35 | MR | Zbl
[21] Saminger S., Maes, K., Baets B. De: Aggregation of T-transitive reciprocal relations. In: Proc. of AGOP’05, Lugano 2005, pp. 113–118
[22] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 | MR | Zbl