$G_\delta$-separation axioms in ordered fuzzy topological spaces
Kybernetika, Tome 43 (2007) no. 1, pp. 103-111 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

$G_\delta$-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.
$G_\delta$-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.
Classification : 03E72, 54A40
Keywords: fuzzy $G_\delta$-neighbourhood; fuzzy $G_\delta$–$T_1$-ordered spaces; fuzzy $G_\delta$–$T_2$ ordered spaces
@article{KYB_2007_43_1_a8,
     author = {Roja, Elango and Uma, Mallasamudram Kuppusamy and Balasubramanian, Ganesan},
     title = {$G_\delta$-separation axioms in ordered fuzzy topological spaces},
     journal = {Kybernetika},
     pages = {103--111},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343335},
     zbl = {1156.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a8/}
}
TY  - JOUR
AU  - Roja, Elango
AU  - Uma, Mallasamudram Kuppusamy
AU  - Balasubramanian, Ganesan
TI  - $G_\delta$-separation axioms in ordered fuzzy topological spaces
JO  - Kybernetika
PY  - 2007
SP  - 103
EP  - 111
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a8/
LA  - en
ID  - KYB_2007_43_1_a8
ER  - 
%0 Journal Article
%A Roja, Elango
%A Uma, Mallasamudram Kuppusamy
%A Balasubramanian, Ganesan
%T $G_\delta$-separation axioms in ordered fuzzy topological spaces
%J Kybernetika
%D 2007
%P 103-111
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a8/
%G en
%F KYB_2007_43_1_a8
Roja, Elango; Uma, Mallasamudram Kuppusamy; Balasubramanian, Ganesan. $G_\delta$-separation axioms in ordered fuzzy topological spaces. Kybernetika, Tome 43 (2007) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a8/

[1] Azad K. A.: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32 | DOI | MR | Zbl

[2] Balasubramanian G.: Maximal fuzzy topologies. Kybernetika 31 (1995), 459–464 | MR | Zbl

[3] Chang C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190 | DOI | MR | Zbl

[4] Katsaras A. K.: Ordered fuzzy topological spaces. J. Math. Anal. Appl. 84 (1981), 44–58 | DOI | MR | Zbl

[5] Smets P.: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1–19 | DOI | MR | Zbl

[6] Sostak A. P.: On a fuzzy topological structure. Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 | MR | Zbl

[7] Sostak A. P.: Basic structure of fuzzy topology. J. Math. Sci. 78 (1996), 662–701 | DOI | MR

[8] Sugeno M.: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59–83 | DOI | MR | Zbl

[9] Warren R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces. Rocky Mountain J. Math. 8 (1978), 459–470 | DOI | MR

[10] Zadeh L. A.: Fuzzy sets. Inform. Control 8 (1965), 338–353 | DOI | MR | Zbl