Weak law of large numbers for i.i.d. fuzzy random variables
Kybernetika, Tome 43 (2007) no. 1, pp. 87-96 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, weak laws of large numbers for sum of independent and identically distributed fuzzy random variables are obtained.
In this paper, weak laws of large numbers for sum of independent and identically distributed fuzzy random variables are obtained.
Classification : 60B12, 60F05
Keywords: fuzzy number; fuzzy random variable; weak law of large numbers
@article{KYB_2007_43_1_a6,
     author = {Hong, Dug Hun and Kim, Kyung Tae},
     title = {Weak law of large numbers for i.i.d. fuzzy random variables},
     journal = {Kybernetika},
     pages = {87--96},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343333},
     zbl = {1139.60013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a6/}
}
TY  - JOUR
AU  - Hong, Dug Hun
AU  - Kim, Kyung Tae
TI  - Weak law of large numbers for i.i.d. fuzzy random variables
JO  - Kybernetika
PY  - 2007
SP  - 87
EP  - 96
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a6/
LA  - en
ID  - KYB_2007_43_1_a6
ER  - 
%0 Journal Article
%A Hong, Dug Hun
%A Kim, Kyung Tae
%T Weak law of large numbers for i.i.d. fuzzy random variables
%J Kybernetika
%D 2007
%P 87-96
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a6/
%G en
%F KYB_2007_43_1_a6
Hong, Dug Hun; Kim, Kyung Tae. Weak law of large numbers for i.i.d. fuzzy random variables. Kybernetika, Tome 43 (2007) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a6/

[1] Chow Y. S., Teicher H.: Probability Theory. Second edition. Springer–Verlag, New York 1998 | Zbl

[2] Goetscheland R., Voxman W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18 (1986), 31–43 | DOI | MR

[3] Gut A.: An extension of the Kolmogorov–Feller weak law of large numbers with an application to the St. Petersburg game. J. Theoret. Probab. 17 (2004), 769–779 | DOI | MR | Zbl

[4] Hong D. H., Kim H. J.: Marcinkiewicz-type law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 64 (1994), 387–393 | DOI | MR | Zbl

[5] Hong D. H.: A convergence of fuzzy random variables. Kybernetika 39 (2003), 275–280 | MR

[6] Inoue H.: A strong law of large numbers for fuzzy random sets. Fuzzy Sets and Systems 41 (1991), 285–291 | DOI | MR | Zbl

[7] Joo S. Y., Lee S. S., Yoo Y. H.: A strong law of large numbers for stationary fuzzy random variables. J. Korean Statist. Soc. 30 (2001), 153–161 | MR

[8] Joo S. Y., Kim Y. K.: Kolmogorov’s strong law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 120 (2001), 499–503 | MR | Zbl

[9] Joo S. Y.: Week laws of large numbers for fuzzy random variables. Fuzzy Sets and Systems 147 (2004), 453–464 | MR

[10] Kim Y. K.: A strong law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 111 (2000), 319–323 | MR

[11] Klement E. P., Puri M. L., Ralescu D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171–182 | MR | Zbl

[12] Kruse R.: The strong law of large numbers for fuzzy random variables. Inform. Sci. 28 (1982), 233–241 | DOI | MR | Zbl

[13] Miyakoshi M., Shimbo M.: A strong law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 12 (1984), 133–142 | DOI | MR | Zbl

[14] Molchanov I.: Strong laws of large numbers for random upper semicontinuous. J. Math. Anal. Appl. 235 (1999), 349–355 | DOI | MR | Zbl

[15] Taylor R. L., Seymour, L., Chen Y.: Week laws of large numbers for fuzzy random sets. Nonlinear Anal. 47 (2001), 1245–1256 | DOI | MR

[16] Uemura T.: A law of large numbers for random sets. Fuzzy Sets and Systems 59 (1993), 181–188 | DOI | MR | Zbl