@article{KYB_2007_43_1_a5,
author = {\'Ubeda-Flores, Manuel},
title = {A new family of trivariate proper quasi-copulas},
journal = {Kybernetika},
pages = {75--85},
year = {2007},
volume = {43},
number = {1},
mrnumber = {2343332},
zbl = {1131.62048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/}
}
Úbeda-Flores, Manuel. A new family of trivariate proper quasi-copulas. Kybernetika, Tome 43 (2007) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl
[2] Beliakov G., Calvo, T., Lázaro J.: Pointwise construction of Lipschitz aggregation operators. In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 | Zbl
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 | MR | Zbl
[4] Cuculescu, I., Theodorescu R.: Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 | MR
[5] Dall’Aglio G.: Fréchet classes and compatibility of distribution functions. Symp. Math. 9 (1972), 131–150 | MR | Zbl
[6] Baets, B. De, Meyer H. De: Orthogonal grid constructions of copulas. IEEE Trans. Fuzzy Systems (to appear)
[7] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Mass distribution associated with a trivariate quasi-copula. Preprint, 2006 | Zbl
[8] Durante F.: Generalized composition of binary aggregation operators. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 | DOI | MR | Zbl
[9] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278 | MR | Zbl
[10] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 | MR | Zbl
[11] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 | MR
[12] Kolesárová A.: 1–Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR
[13] Nelsen R. B.: Copulas and quasi-copulas: An introduction to their properties and applications. In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 | MR | Zbl
[14] Nelsen R. B.: An Introduction to Copulas. Second Edition. Springer, New York 2006 | MR | Zbl
[15] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 | DOI | MR | Zbl
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 | MR | Zbl
[17] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl
[18] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance Math. Econom. (to appear) | MR | Zbl
[19] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 | MR
[20] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Some advances in the study of the compatibility of three bivariate copulas. J. Ital. Statist. Soc. 3 (1994), 397–417 | DOI
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820 | MR | Zbl
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 | MR | Zbl
[23] Sklar A.: Fonctions de répartition $\grave{\mathrm a}$ $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR
[24] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 | MR | Zbl