A new family of trivariate proper quasi-copulas
Kybernetika, Tome 43 (2007) no. 1, pp. 75-85 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
Classification : 60E05, 62H05
Keywords: copula; mass distribution; quasi-copula
@article{KYB_2007_43_1_a5,
     author = {\'Ubeda-Flores, Manuel},
     title = {A new family of trivariate proper quasi-copulas},
     journal = {Kybernetika},
     pages = {75--85},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343332},
     zbl = {1131.62048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/}
}
TY  - JOUR
AU  - Úbeda-Flores, Manuel
TI  - A new family of trivariate proper quasi-copulas
JO  - Kybernetika
PY  - 2007
SP  - 75
EP  - 85
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/
LA  - en
ID  - KYB_2007_43_1_a5
ER  - 
%0 Journal Article
%A Úbeda-Flores, Manuel
%T A new family of trivariate proper quasi-copulas
%J Kybernetika
%D 2007
%P 75-85
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/
%G en
%F KYB_2007_43_1_a5
Úbeda-Flores, Manuel. A new family of trivariate proper quasi-copulas. Kybernetika, Tome 43 (2007) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a5/

[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl

[2] Beliakov G., Calvo, T., Lázaro J.: Pointwise construction of Lipschitz aggregation operators. In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 | Zbl

[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 | MR | Zbl

[4] Cuculescu, I., Theodorescu R.: Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 | MR

[5] Dall’Aglio G.: Fréchet classes and compatibility of distribution functions. Symp. Math. 9 (1972), 131–150 | MR | Zbl

[6] Baets, B. De, Meyer H. De: Orthogonal grid constructions of copulas. IEEE Trans. Fuzzy Systems (to appear)

[7] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Mass distribution associated with a trivariate quasi-copula. Preprint, 2006 | Zbl

[8] Durante F.: Generalized composition of binary aggregation operators. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 | DOI | MR | Zbl

[9] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278 | MR | Zbl

[10] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 | MR | Zbl

[11] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 | MR

[12] Kolesárová A.: 1–Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR

[13] Nelsen R. B.: Copulas and quasi-copulas: An introduction to their properties and applications. In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 | MR | Zbl

[14] Nelsen R. B.: An Introduction to Copulas. Second Edition. Springer, New York 2006 | MR | Zbl

[15] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 | DOI | MR | Zbl

[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 | MR | Zbl

[17] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl

[18] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance Math. Econom. (to appear) | MR | Zbl

[19] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 | MR

[20] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Some advances in the study of the compatibility of three bivariate copulas. J. Ital. Statist. Soc. 3 (1994), 397–417 | DOI

[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820 | MR | Zbl

[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 | MR | Zbl

[23] Sklar A.: Fonctions de répartition $\grave{\mathrm a}$ $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[24] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 | MR | Zbl