$M$-estimation in nonlinear regression for longitudinal data
Kybernetika, Tome 43 (2007) no. 1, pp. 61-74 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
Classification : 60G55, 62F10, 62F12, 62M10
Keywords: $M$-estimation; nonlinear regression; longitudinal data
@article{KYB_2007_43_1_a4,
     author = {Ors\'akov\'a, Martina},
     title = {$M$-estimation in nonlinear regression for longitudinal data},
     journal = {Kybernetika},
     pages = {61--74},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343331},
     zbl = {1252.62069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a4/}
}
TY  - JOUR
AU  - Orsáková, Martina
TI  - $M$-estimation in nonlinear regression for longitudinal data
JO  - Kybernetika
PY  - 2007
SP  - 61
EP  - 74
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a4/
LA  - en
ID  - KYB_2007_43_1_a4
ER  - 
%0 Journal Article
%A Orsáková, Martina
%T $M$-estimation in nonlinear regression for longitudinal data
%J Kybernetika
%D 2007
%P 61-74
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a4/
%G en
%F KYB_2007_43_1_a4
Orsáková, Martina. $M$-estimation in nonlinear regression for longitudinal data. Kybernetika, Tome 43 (2007) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a4/

[1] Andersen P. K., Borgan Ø.: Counting process for life history data: A review. Scand. J. Statistist. 12 (1985), 97–158 | MR

[2] Andersen P. K., Borgan Ø., Gill R. D., Keiding N.: Statistical Models Based on Counting Processes. Springer, New York 1991 | Zbl

[3] Billingsley P.: Covergence of Probability Measures. Wiley, New York 1999 | MR

[4] Boel R., Varaiya, P., Wong E.: Martingales on jump processes. SIAM J. Control 13 (1975), 999–1061 | DOI | MR | Zbl

[5] Diggle P. J., Heagerty P., Liang K. Y., Zeger S. L.: Analysis of Longitudinal Data. Oxford Univ. Press, Oxford 2002 | MR | Zbl

[6] Flemming T. R., Harrington D. P.: Counting Processes and Survival Analysis. Wiley, New York 1991 | MR

[7] Huber P. J.: Robust Statistics. Wiley, New York 1981 | MR

[8] Jacobsen M.: Statistical Analysis of Counting Processes. Springer, New York 1982 | MR | Zbl

[9] Jacod J., Shiryaev A. N.: Limit Theorems for Stochastic Processes. Springer, New York 2002 | MR | Zbl

[10] Jarník V.: Differential Calculus II (in Czech). Academia, Prague 1984

[11] Jurečková J., Sen P. K.: Uniform second order asymptotic linearity of $M$-statistics in linear models. Statist. Decisions 7 (1989), 263–276 | MR

[12] Klein J. P., Moeschberger M. L.: Survival Analysis. Springer, New York 1997 | Zbl

[13] Last G., Brandt A.: Marked Point Processes on the Real Line, The Dynamic Approach. Springer, New York 1995 | MR | Zbl

[14] Lehmann E.: Theory of Point Estimation. Wiley, New York 1983 | MR | Zbl

[15] Liang K. Y., Zeger S. L.: Longitudinal data analysis using generalized linear models. Biometrika 73 (1986), 13–22 | DOI | MR | Zbl

[16] Lindsey J. K.: Models for Repeated Measurements. Oxford Univ. Press, Oxford 1999 | MR

[17] Martinussen T., Scheike T. H.: A Non-Parametric Dynamic Additive Regression Model for Longitudinal Data. Research Report, Copenhagen 1998

[18] Martinussen T., Scheike T. H.: A Semi-Parametric Additive Regression Model for Longitudinal Data. Research Report, Copenhagen 1998

[19] Orsáková M.: Models for censored data. In: Proc. $8^{{\mathrm th}}$ Annual Conference of Doctoral Students WDS’99, Faculty of Mathematics and Physics, Charles Univ. Prague 1999

[20] Orsáková M.: Regression models for longitudinal data. In: Proc. Robust’2000, Union of the Czech Mathematicians and Physicists, Prague 2001, pp. 210–216

[21] Rebolledo R.: Central limit theorem for local martingales. Z. Wahrsch. verw. Geb. 51 (1980), 269–286 | DOI | MR

[22] Rubio A. M., Víšek J. Á.: A note on asymptotic linearity of $M$-statistics in nonlinear models. Kybernetika 32 (1996), 353–374 | MR | Zbl

[23] Scheike T. H.: Parametric regression for longitudinal data with counting process measurement times. Scand. J. Statistist. 21 (1994), 245–263 | MR | Zbl

[24] Scheike T. H., Zhang M.: Cumulative regression tests for longitudinal data. Annals Statist. (1998), 1328–1354

[25] Štěpán J.: The Theory of Probability (in Czech). Academia, Prague 1987