On Bayesian estimation in an exponential distribution under random censorship
Kybernetika, Tome 43 (2007) no. 1, pp. 45-60 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper gives some basic ideas of both the construction and investigation of the properties of the Bayesian estimates of certain parametric functions of the parent exponential distribution under the model of random censorship assuming the Koziol–Green model. Various prior distributions are investigated and the corresponding estimates are derived. The stress is put on the asymptotic properties of the estimates with the particular stress on the Bayesian risk. Small sample properties are studied via simulations in the special case.
The paper gives some basic ideas of both the construction and investigation of the properties of the Bayesian estimates of certain parametric functions of the parent exponential distribution under the model of random censorship assuming the Koziol–Green model. Various prior distributions are investigated and the corresponding estimates are derived. The stress is put on the asymptotic properties of the estimates with the particular stress on the Bayesian risk. Small sample properties are studied via simulations in the special case.
Classification : 62F10, 62F11, 62F12, 62F15, 62N05
Keywords: exponential distribution; random censoring; survival data analysis; reliability; Koziol–Green model; Bayesian estimates; Bayesian risk; conjugate priors; asymptotic properties; small sample properties; simulation study
@article{KYB_2007_43_1_a3,
     author = {Friesl, Michal and Hurt, Jan},
     title = {On {Bayesian} estimation in an exponential distribution under random censorship},
     journal = {Kybernetika},
     pages = {45--60},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343330},
     zbl = {1252.62017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a3/}
}
TY  - JOUR
AU  - Friesl, Michal
AU  - Hurt, Jan
TI  - On Bayesian estimation in an exponential distribution under random censorship
JO  - Kybernetika
PY  - 2007
SP  - 45
EP  - 60
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a3/
LA  - en
ID  - KYB_2007_43_1_a3
ER  - 
%0 Journal Article
%A Friesl, Michal
%A Hurt, Jan
%T On Bayesian estimation in an exponential distribution under random censorship
%J Kybernetika
%D 2007
%P 45-60
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a3/
%G en
%F KYB_2007_43_1_a3
Friesl, Michal; Hurt, Jan. On Bayesian estimation in an exponential distribution under random censorship. Kybernetika, Tome 43 (2007) no. 1, pp. 45-60. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a3/

[1] Santis F. De, Mortera, J., Nardi A.: Jeffreys priors for survival models with censored data. J. Statist. Plann. Inference 99 (2001), 2, 193–209 | DOI | MR | Zbl

[2] Franz J.: On Estimation Problems in Random Censored Repair Models. Econom. Quality Control 9 (1994), No. 3, 125–142 | Zbl

[4] Friesl M.: Weak asymptotics of the Bayes estimator of the reliability function in the Koziol–Green model. Statist. Decisions 19 (2001), 1, 83–87 | MR | Zbl

[5] Herbst T.: Test of fit with the Koziol–Green model for random censorship. Statist. Decisions 10 (1992), 163–171 | MR | Zbl

[6] Hurt J.: Comparison of some reliability estimators in the exponential case under random censorship. In: Proc. 5th Pannonian Symp. on Math. Statist. (W. Grossmann, J. Mogyoródí, and W. Wertz, eds.), Visegrád 1985, pp. 255–266 | MR

[7] Hurt J.: Asymptotic expansions for moments of functions of stochastic processes and their Applications. Statist. Decisions 4 (1992), 251–271 | MR

[8] Hurt J.: On Statistical Methods for Survival Data Analysis. In: Proc. Summer School ROBUST’92 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians and Physicists, Prague 1992, pp. 54–74

[9] Koziol J. A., Green S. B.: A Cramér–von Mises statistic for randomly censored data. Biometrika 63 (1976), 465–474 | MR | Zbl

[10] Liang T.: Empirical Bayes estimation with random right censoring. Internat. J. Inform. Manag. Sci. 15 (2004), 4, 1–12 | MR | Zbl

[11] Martz H. F., Waller R. A.: Bayesian Reliability Analysis. Wiley, New York 1982 | MR | Zbl

[12] Raqab M. Z., Madi M. T.: Bayesian inference for the generalized exponential distribution. J. Statist. Comput. Simulation 75 (2005), 10, 841–852 | DOI | MR | Zbl

[13] Sarhan A. M.: Empirical Bayes estimates in exponential reliability model. Appl. Math. Comput. 135 (2003), 2–3, 319–332 | DOI | MR | Zbl