Controllability of semilinear stochastic integrodifferential systems
Kybernetika, Tome 43 (2007) no. 1, pp. 31-44 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the approximate and complete controllability of stochastic integrodifferential system in finite dimensional spaces. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Picard iteration technique.
In this paper we study the approximate and complete controllability of stochastic integrodifferential system in finite dimensional spaces. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Picard iteration technique.
Classification : 60H10, 93B05, 93C23, 93E03, 93E20
Keywords: controllability; approximate controllability; stochastic integrodifferential system; Picard iteration
@article{KYB_2007_43_1_a2,
     author = {Balachandran, Krishnan and Karthikeyan, S. and Kim, J.-H.},
     title = {Controllability of semilinear stochastic integrodifferential systems},
     journal = {Kybernetika},
     pages = {31--44},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2343329},
     zbl = {1137.93010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a2/}
}
TY  - JOUR
AU  - Balachandran, Krishnan
AU  - Karthikeyan, S.
AU  - Kim, J.-H.
TI  - Controllability of semilinear stochastic integrodifferential systems
JO  - Kybernetika
PY  - 2007
SP  - 31
EP  - 44
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a2/
LA  - en
ID  - KYB_2007_43_1_a2
ER  - 
%0 Journal Article
%A Balachandran, Krishnan
%A Karthikeyan, S.
%A Kim, J.-H.
%T Controllability of semilinear stochastic integrodifferential systems
%J Kybernetika
%D 2007
%P 31-44
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a2/
%G en
%F KYB_2007_43_1_a2
Balachandran, Krishnan; Karthikeyan, S.; Kim, J.-H. Controllability of semilinear stochastic integrodifferential systems. Kybernetika, Tome 43 (2007) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/KYB_2007_43_1_a2/

[1] Balachandran K., Dauer J.: Controllability of nonlinear systems via fixed point theorems. J. Optim. Theory Appl. 53 (1987), 345–352 | DOI | MR | Zbl

[2] Dauer J., Balachandran K.: Sample controllability of general nonlinear stochastic systems. Libertas Math. 17 (1997), 143–153 | MR | Zbl

[3] Dobov M. A., Mordukhovich B. S.: Theory of controllability of linear stochastic systems. Differential Equations 14 (1978), 1609–1612

[4] Enrhardt M., Kliemann W.: Controllability of stochastic linear systems. Systems Control Lett. 2 (1982), 45–153

[5] Klamka J.: Schauder’s fixed point theorem in nonlinear controllability problems. Control Cybernet. 29 (2000), 153–165 | MR | Zbl

[6] Klamka J., Socha L.: Some remarks about stochastic controllability. IEEE Trans. Automat. Control 22 (1977), 880–881 | DOI | MR | Zbl

[7] Lipster R. S., Shiryaev A. N.: Statistics of Random Processes. Springer, New York 1977

[8] Mahmudov N. I., Denker A.: On controllability of linear stochastic systems. Internat. J. Control 73 (2000), 144–151 | DOI | MR | Zbl

[9] Mahmudov N. I.: Controllability of linear stochastic systems. IEEE Trans. Automat. Control 46 (2001), 724–731 | DOI | MR | Zbl

[10] Mahmudov N. I.: On controllability of semilinear stochastic systems in Hilbert spaces. IMA J. Math. Control Inform. 19 (2002), 363–376 | DOI | MR | Zbl

[11] Mahmudov N. I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 42 (2004), 1604–1622 | DOI | MR | Zbl

[12] Mahmudov N. I., Zorlu S.: Controllability of nonlinear stochastic systems. Internat. J. Control 76 (2003), 95–104 | DOI | MR | Zbl

[13] Mahmudov N. I., Zorlu S.: Controllability of semilinear stochastic systems. Internat. J. Control 78 (2005), 997–1004 | DOI | MR | Zbl

[14] Sunahara Y., Kabeuchi T., Asada, S., Kishino K.: On stochastic controllability for nonlinear systems. IEEE Trans. Automat. Control 19 (1974), 49–54 | DOI | MR

[15] Zabczyk J.: Controllability of stochastic linear systems. Systems Control Lett. 1 (1987), 25–31 | DOI | MR