Keywords: fuzzy models; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI)
@article{KYB_2006_42_6_a2,
author = {Bernal, Miguel and Hu\v{s}ek, Petr and Ku\v{c}era, Vladim{\'\i}r},
title = {Nonquadratic stabilization of continuous-time systems in the {Takagi-Sugeno} form},
journal = {Kybernetika},
pages = {665--672},
year = {2006},
volume = {42},
number = {6},
mrnumber = {2296507},
zbl = {1249.93168},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/}
}
TY - JOUR AU - Bernal, Miguel AU - Hušek, Petr AU - Kučera, Vladimír TI - Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form JO - Kybernetika PY - 2006 SP - 665 EP - 672 VL - 42 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/ LA - en ID - KYB_2006_42_6_a2 ER -
Bernal, Miguel; Hušek, Petr; Kučera, Vladimír. Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form. Kybernetika, Tome 42 (2006) no. 6, pp. 665-672. http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/
[1] Apkarian X., Gahinet X.: A convex characterization of gain scheduling Hinf controllers. IEEE Trans. Control Systems 40 (1995), 853–864 | MR
[2] Begovich O., Sanchez E. N., Maldonado M.: Takagi–Sugeno fuzzy scheme for real trajectory tracking of an underactuated robot. IEEE Trans. Control Systems Techn. 10 (2002), 14–20 | DOI
[3] Bernal M., Hušek P.: Piecewise quadratic stability of affine Takagi–Sugeno fuzzy control systems. In: Proc. Advanced Fuzzy-Neural Control Conference, Oulu 2004, pp.157–162
[4] Bernal M., Hušek P.: Controller synthesis with input and output constraints for fuzzy systems. In: 16th IFAC World Congress DVD-edition, Prague 2005
[5] Bernal M.: Non-quadratic discrete fuzzy controller design performing decay rate. In: FUZZ–IEEE Internat. Conference, Reno 2005, CD edition
[6] Bernal M., Hušek, P., Kučera V.: Non-quadratic design for continuous-time systems in the Takagi–Sugeno form. Submitted to Automatica
[7] Feng G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 11 (2003), 605–612 | DOI
[8] Feng G.: Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 12 (2004), 22–28 | DOI
[9] Guerra T. M., Vermeiren L.: LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 40 (2004), 823–829 | DOI | MR
[10] Johansson M., Rantzer, A., Arzen K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems 7 (1999), 713–722 | DOI
[11] Rantzer A., Johansson M.: Piecewise linear quadratic optimal control. IEEE Trans. Automat. Control 45 (2000), 629–637 | DOI | MR | Zbl
[12] Takagi T., Sugeno M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man and Cybernet. 15 (1985), 116–132 | DOI | Zbl
[13] Tanaka K., Sugeno M.: Stability analysis of fuzzy systems using Lyapunov’s direct method. In: Proc. NAFIPS’90, pp. 133–136
[14] Tanaka K., Ikeda, T., Wang H. O.: Fuzzy regulators and fuzzy observers: Relaxed stability conditions and lmi-based designs. IEEE Trans. Fuzzy Systems 6 (1998), 250–264 | DOI
[15] Tanaka K., Hori, T., Wang H. O.: A multiple function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Systems 11 (2003), 582–589 | DOI
[16] H. O. Wang , Tanaka, K., Griffin M.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Systems 4 (1996), 14–23 | DOI