Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form
Kybernetika, Tome 42 (2006) no. 6, pp. 665-672 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software.
This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software.
Classification : 62A01, 62A10, 62F15, 93C42, 93D15, 93E12
Keywords: fuzzy models; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI)
@article{KYB_2006_42_6_a2,
     author = {Bernal, Miguel and Hu\v{s}ek, Petr and Ku\v{c}era, Vladim{\'\i}r},
     title = {Nonquadratic stabilization of continuous-time systems in the {Takagi-Sugeno} form},
     journal = {Kybernetika},
     pages = {665--672},
     year = {2006},
     volume = {42},
     number = {6},
     mrnumber = {2296507},
     zbl = {1249.93168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/}
}
TY  - JOUR
AU  - Bernal, Miguel
AU  - Hušek, Petr
AU  - Kučera, Vladimír
TI  - Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form
JO  - Kybernetika
PY  - 2006
SP  - 665
EP  - 672
VL  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/
LA  - en
ID  - KYB_2006_42_6_a2
ER  - 
%0 Journal Article
%A Bernal, Miguel
%A Hušek, Petr
%A Kučera, Vladimír
%T Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form
%J Kybernetika
%D 2006
%P 665-672
%V 42
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/
%G en
%F KYB_2006_42_6_a2
Bernal, Miguel; Hušek, Petr; Kučera, Vladimír. Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form. Kybernetika, Tome 42 (2006) no. 6, pp. 665-672. http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a2/

[1] Apkarian X., Gahinet X.: A convex characterization of gain scheduling Hinf controllers. IEEE Trans. Control Systems 40 (1995), 853–864 | MR

[2] Begovich O., Sanchez E. N., Maldonado M.: Takagi–Sugeno fuzzy scheme for real trajectory tracking of an underactuated robot. IEEE Trans. Control Systems Techn. 10 (2002), 14–20 | DOI

[3] Bernal M., Hušek P.: Piecewise quadratic stability of affine Takagi–Sugeno fuzzy control systems. In: Proc. Advanced Fuzzy-Neural Control Conference, Oulu 2004, pp.157–162

[4] Bernal M., Hušek P.: Controller synthesis with input and output constraints for fuzzy systems. In: 16th IFAC World Congress DVD-edition, Prague 2005

[5] Bernal M.: Non-quadratic discrete fuzzy controller design performing decay rate. In: FUZZ–IEEE Internat. Conference, Reno 2005, CD edition

[6] Bernal M., Hušek, P., Kučera V.: Non-quadratic design for continuous-time systems in the Takagi–Sugeno form. Submitted to Automatica

[7] Feng G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 11 (2003), 605–612 | DOI

[8] Feng G.: Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Systems 12 (2004), 22–28 | DOI

[9] Guerra T. M., Vermeiren L.: LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 40 (2004), 823–829 | DOI | MR

[10] Johansson M., Rantzer, A., Arzen K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems 7 (1999), 713–722 | DOI

[11] Rantzer A., Johansson M.: Piecewise linear quadratic optimal control. IEEE Trans. Automat. Control 45 (2000), 629–637 | DOI | MR | Zbl

[12] Takagi T., Sugeno M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man and Cybernet. 15 (1985), 116–132 | DOI | Zbl

[13] Tanaka K., Sugeno M.: Stability analysis of fuzzy systems using Lyapunov’s direct method. In: Proc. NAFIPS’90, pp. 133–136

[14] Tanaka K., Ikeda, T., Wang H. O.: Fuzzy regulators and fuzzy observers: Relaxed stability conditions and lmi-based designs. IEEE Trans. Fuzzy Systems 6 (1998), 250–264 | DOI

[15] Tanaka K., Hori, T., Wang H. O.: A multiple function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Systems 11 (2003), 582–589 | DOI

[16] H. O. Wang , Tanaka, K., Griffin M.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Systems 4 (1996), 14–23 | DOI