Keywords: discounted Markov control process; deterministic control system; Euler equation; deterministic control system perturbed by a random noise
@article{KYB_2006_42_6_a1,
author = {Cruz-Su\'arez, Hugo and Montes-de-Oca, Ra\'ul},
title = {Discounted {Markov} control processes induced by deterministic systems},
journal = {Kybernetika},
pages = {647--664},
year = {2006},
volume = {42},
number = {6},
mrnumber = {2296506},
zbl = {1249.90312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a1/}
}
Cruz-Suárez, Hugo; Montes-de-Oca, Raúl. Discounted Markov control processes induced by deterministic systems. Kybernetika, Tome 42 (2006) no. 6, pp. 647-664. http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a1/
[1] Benveniste L. M., Scheinkman J. A.: On the differentiability of the value function in dynamic models of economics. Econometrica 47 (1979), 727–732 | DOI | MR | Zbl
[2] Bertsekas D. P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, New Jersey 1987 | MR | Zbl
[3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415–436 | DOI | MR | Zbl
[4] Fuente A. De la: Mathematical Methods and Models for Economists. Cambridge University Press, New York 2000 | MR | Zbl
[5] Duffie D.: Security Markets. Academic Press, Boston 1988 | MR | Zbl
[6] Durán J.: On dynamic programming with unbounded returns. J. Econom. Theory 15 (2000), 339–352 | DOI | MR | Zbl
[7] Heer B., Maußner A.: Dynamic General Equilibrium Modelling: Computational Method and Application. Springer-Verlag, Berlin 2005 | MR
[8] Hernández-Lerma O.: Adaptive Markov Control Processes. Springer-Verlag, New York 1989 | MR
[9] Hernández-Lerma O., Lasserre J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996 | MR | Zbl
[10] Van C. Le, Morhaim L.: Optimal growth models with bounded or unbounded returns: a unifying approach. J. Econom. Theory 105 (2002), 158–187 | DOI | MR | Zbl
[11] Levhari D., Srinivasan T. N.: Optimal savings under uncertainty. Rev. Econom. Stud. 36 (1969), 153–164 | DOI
[12] Mirman L. J.: Dynamic models of fishing: a heuristic approach. In: Control Theory in Mathematical Economics (Pan-Tai Liu and J. G. Sutinen, eds.), Marcel Dekker, New York 1979, pp. 39–73 | Zbl
[13] Rincón-Zapatero J. L., Rodríguez-Palmero C.: Existence and uniqueness of solutions to the Bellman equation in the unbounded case. Econometrica 71 (2003), 1519–1555 | DOI | MR | Zbl
[14] Santos M. S.: Numerical solution of dynamic economic models. In: Handbook of Macroeconomic, Volume I (J. B. Taylor and M. Woodford, eds.), North Holland, Amsterdam 1999, pp. 311–386
[15] Stokey N. L., Lucas R. E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge, Mass. 1989 | MR | Zbl