Decision-making under uncertainty processed by lattice-valued possibilistic measures
Kybernetika, Tome 42 (2006) no. 6, pp. 629-646 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion and theory of statistical decision functions are re-considered and modified to the case when the uncertainties in question are quantified and processed using lattice-valued possibilistic measures, so emphasizing rather the qualitative than the quantitative properties of the resulting possibilistic decision functions. Possibilistic variants of both the minimax (the worst-case) and the Bayesian optimization principles are introduced and analyzed.
The notion and theory of statistical decision functions are re-considered and modified to the case when the uncertainties in question are quantified and processed using lattice-valued possibilistic measures, so emphasizing rather the qualitative than the quantitative properties of the resulting possibilistic decision functions. Possibilistic variants of both the minimax (the worst-case) and the Bayesian optimization principles are introduced and analyzed.
Classification : 28E10, 28E99, 91B06
Keywords: decision making under uncertainty; complete lattice; lattice- valued possibilistic measures; possibilistic decision function; minimax and Bayesian optimization
@article{KYB_2006_42_6_a0,
     author = {Kramosil, Ivan},
     title = {Decision-making under uncertainty processed by lattice-valued possibilistic measures},
     journal = {Kybernetika},
     pages = {629--646},
     year = {2006},
     volume = {42},
     number = {6},
     mrnumber = {2296505},
     zbl = {1249.28024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a0/}
}
TY  - JOUR
AU  - Kramosil, Ivan
TI  - Decision-making under uncertainty processed by lattice-valued possibilistic measures
JO  - Kybernetika
PY  - 2006
SP  - 629
EP  - 646
VL  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a0/
LA  - en
ID  - KYB_2006_42_6_a0
ER  - 
%0 Journal Article
%A Kramosil, Ivan
%T Decision-making under uncertainty processed by lattice-valued possibilistic measures
%J Kybernetika
%D 2006
%P 629-646
%V 42
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a0/
%G en
%F KYB_2006_42_6_a0
Kramosil, Ivan. Decision-making under uncertainty processed by lattice-valued possibilistic measures. Kybernetika, Tome 42 (2006) no. 6, pp. 629-646. http://geodesic.mathdoc.fr/item/KYB_2006_42_6_a0/

[1] Birkhoff G.: Lattice Theory. Third edition. Amer. Math. Society, Providence, RI 1967 | MR | Zbl

[2] Blackwell D., Girshick N. A.: Theory of Games and Statistical Decisions. Wiley, New York, 1954 | MR | Zbl

[3] Cooman G. De: Possibility theory I, II, III. Internat. J. Gen. Systems 25 (1997), 4, 291–323, 325–351, 353–371

[4] Dubois D., Prade H.: Théorie des Possibilités – Applications à la Représentation des Connaissances en Informatique. Mason, Paris 1985 | Zbl

[5] Dubois D., Nguyen, H., Prade H.: Possibility theory, probability theory and fuzzy sets: misunderstandings, bridges and gaps. In: The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Boston, 2000, pp. 343–438

[6] Faure R., Heurgon E.: Structures Ordonnées et Algèbres de Boole. Gauthier-Villars, Paris 1971 | MR | Zbl

[7] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Boston 1998 | MR | Zbl

[8] Halmos P. R.: Measure Theory. D. van Nostrand, New York – Toronto – London 1950 | MR | Zbl

[9] Kramosil I.: Extensions of partial lattice-valued possibility measures. Neural Network World 13 (2003), 4, 361–384

[10] Loève M.: Probability Theory. D. van Nostrand, New York – Toronto – London 1960 | MR | Zbl

[11] Sikorski R.: Boolean Algebras. Second edition. Springer-Verlag, Berlin – Göttingen – Heidelberg – New York 1964 | MR | Zbl

[12] Wald A.: Statistical Decision Functions. Wiley, New York 1950 | MR | Zbl