Keywords: invariant measures; zero range process; binary tree; queues
@article{KYB_2006_42_5_a4,
author = {Fajfrov\'a, Lucie},
title = {Infinite queueing systems with tree structure},
journal = {Kybernetika},
pages = {585--604},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2283507},
zbl = {1249.60194},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a4/}
}
Fajfrová, Lucie. Infinite queueing systems with tree structure. Kybernetika, Tome 42 (2006) no. 5, pp. 585-604. http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a4/
[1] Andjel E. D.: Invariant measures for the zero range process. Ann. Probab. 10 (1982), 525–547 | DOI | MR | Zbl
[3] Harris T. E.: Nearest-neighbor Markov interaction processes on multidimensional lattice. Adv. in Math. 9 (1972), 66–89 | DOI | MR
[4] Liggett T. M.: Interacting Particle Systems. Springer–Verlag, New York 1985 | MR
[5] Saada E.: Processus de zero-range avec particule marquee. Ann. Inst. H. Poincaré 26 (1990), 1, 5–17 | MR | Zbl
[6] Sethuraman S.: On extremal measures for conservative particle systems. Ann. Inst. H. Poincaré 37 (2001), 2, 139–154 | DOI | MR | Zbl
[7] Spitzer F.: Interaction of Markov processes. Adv. in Math. 5 (1970), 246–290 | DOI | MR | Zbl
[8] Štěpán J.: A noncompact Choquet theorem. Comment. Math. Univ. Carolin. 25 (1984), 1, 73–89 | MR | Zbl
[9] Waymire E.: Zero-range interaction at Bose-Einstein speeds under a positive recurrent single particle law. Ann. Probab. 8 (1980), 3, 441–450 | DOI | MR | Zbl