Keywords: stereology of extremes; shape factor; normalising constants; tail uniformity
@article{KYB_2006_42_5_a2,
author = {Hlubinka, Daniel},
title = {Shape factor extremes for prolate spheroids},
journal = {Kybernetika},
pages = {557--568},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2283505},
zbl = {1249.60106},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a2/}
}
Hlubinka, Daniel. Shape factor extremes for prolate spheroids. Kybernetika, Tome 42 (2006) no. 5, pp. 557-568. http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a2/
[1] Coles S.: An Introduction to Statistical Modeling of Extreme Values. Springer–Verlag, Berlin 2001 | MR | Zbl
[2] Cruz-Orive L.-M.: Particle size-shape distributions; the general spheroid problem. J. Microsc. 107 (1976), 235–253 | DOI
[3] Drees H., Reiss R.-D.: Tail behavior in Wicksell’s corpuscle problem. In: Probability Theory and Applications (J. Galambos and J. Kátai, eds.), Kluwer, Dordrecht 1992, pp. 205–220 | MR
[4] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events for Insurance and Finance. Springer–Verlag, Berlin 1997 | MR | Zbl
[5] Haan L. de: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. (Mathematical Centre Tract 32.) Mathematisch Centrum, Amsterdam 1975 | MR | Zbl
[6] Hall P.: On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser. B 44 (1982), 37–42 | MR | Zbl
[7] Hlubinka D.: Stereology of extremes; shape factor of spheroids. Extremes 5 (2003), 5–24 | DOI | MR | Zbl
[8] Hlubinka D.: Stereology of extremes; size of spheroids. Mathematica Bohemica 128 (2003), 419–438 | MR | Zbl
[9] Hlubinka D.: Extremes of spheroid shape factor based on two dimensional profiles. Kybernetika 42 (2006), 77–94 | MR
[10] Hlubinka D., Kotz S.: The generalized FGM distribution and its application to stereology of extremes. Far East J. Theoret. Statist. (to appear) | MR | Zbl
[11] Kötzer S., Molchanov I.: On the domain of attraction for the lower tail in Wicksell’s corpuscle problem. In: Proc. S$^4$G (V. Beneš, R. Lechnerová, and I. Saxl, eds.), Prague 2006, pp. 91–96
[12] Takahashi R., Sibuya M.: The maximum size of the planar sections of random spheres and its application to metalurgy. Ann. Inst. Statist. Math. 48 (1996), 127–144 | DOI | MR
[13] Takahashi R., Sibuya M.: Maximum size prediction in Wicksell’s corpuscle problem for the exponential tail data. Extremes 5 (2002), 55–70 | DOI | MR | Zbl