Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes
Kybernetika, Tome 42 (2006) no. 5, pp. 539-556 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Doubly stochastic point processes driven by non-Gaussian Ornstein–Uhlenbeck type processes are studied. The problem of nonlinear filtering is investigated. For temporal point processes the characteristic form for the differential generator of the driving process is used to obtain a stochastic differential equation for the conditional distribution. The main result in the spatio-temporal case leads to the filtering equation for the conditional mean.
Doubly stochastic point processes driven by non-Gaussian Ornstein–Uhlenbeck type processes are studied. The problem of nonlinear filtering is investigated. For temporal point processes the characteristic form for the differential generator of the driving process is used to obtain a stochastic differential equation for the conditional distribution. The main result in the spatio-temporal case leads to the filtering equation for the conditional mean.
Classification : 60G55, 60K35
Keywords: Cox process; filtering; Ornstein–Uhlenbeck process
@article{KYB_2006_42_5_a1,
     author = {Proke\v{s}ov\'a, Michaela and Bene\v{s}, Viktor},
     title = {Nonlinear filtering in spatio{\textendash}temporal doubly stochastic point processes driven by {OU} processes},
     journal = {Kybernetika},
     pages = {539--556},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2283504},
     zbl = {1249.60097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a1/}
}
TY  - JOUR
AU  - Prokešová, Michaela
AU  - Beneš, Viktor
TI  - Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes
JO  - Kybernetika
PY  - 2006
SP  - 539
EP  - 556
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a1/
LA  - en
ID  - KYB_2006_42_5_a1
ER  - 
%0 Journal Article
%A Prokešová, Michaela
%A Beneš, Viktor
%T Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes
%J Kybernetika
%D 2006
%P 539-556
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a1/
%G en
%F KYB_2006_42_5_a1
Prokešová, Michaela; Beneš, Viktor. Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes. Kybernetika, Tome 42 (2006) no. 5, pp. 539-556. http://geodesic.mathdoc.fr/item/KYB_2006_42_5_a1/

[1] Barndorff-Nielsen O., Shephard N.: Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in financial economics. J. Roy. Statist. Soc. B 63 (2001), 167–241 | DOI | MR | Zbl

[2] Beneš V., Prokešová M.: Nonlinear filtration in doubly stochastic point processes. In: Proc. 4th International Conference Aplimat 2005 (M. Kováčová, ed.), FME, Slovak Technical University, Bratislava 2005, pp. 415–420

[3] Brémaud P.: Point Processes and Queues: Martingale Dynamics. Springer–Verlag, Berlin 1981 | MR | Zbl

[4] Cont R., Tankov P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, Boca Raton 2004 | MR

[5] Daley D. J., Vere-Jones D.: An Introduction to the Theory of Point Processes. Springer–Verlag, New York 1988 | MR | Zbl

[6] Daley D. J., Vere-Jones D.: An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods. Second edition. Springer–Verlag, New York 2003 | MR | Zbl

[7] Fishman P. M., Snyder D.: The statistical analysis of space-time point processes. IEEE Trans. Inform. Theory 22 (1976), 257–274 | DOI | MR | Zbl

[8] Gihman I., Dorogovcev A.: On stability of solutions of stochastic differential equations. Ukrain. Mat. Z. 6 (1965), 229–250 | MR

[9] Jurek Z. J., Mason J. D.: Operator-limit Distributions in Probability Theory. Wiley, New York 1993 | MR | Zbl

[10] Karr A. F.: Point Processes and Their Statistical Inference. Marcel Dekker, New York 1986 | MR | Zbl

[11] Liptser R. S., Shiryayev A. N.: Statistics in Random Processes, Vol. II: Applications. Springer–Verlag, New York 2000 | MR

[12] Sato K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge 1999 | MR | Zbl

[13] Sato K.: Basic results on Lévy processes. In: Lévy Processes – Theory and Applications (O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Birkäuser, Boston 2001 | MR | Zbl

[14] Snyder D. L.: Filtering and detection for doubly stochastic Poisson processes. IEEE Trans. Inform. Theory 18 (1972), 91–102 | DOI | MR | Zbl

[15] Snyder D., Miller M.: Random Point Processes in Time and Space. Springer–Verlag, New York 1991 | Zbl