A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors
Kybernetika, Tome 42 (2006) no. 4, pp. 441-452 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a necessity measure optimization model of linear programming problems with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear fractional programming problems. Utilizing a special structure of the reduced problem, we propose a solution algorithm based on Bender’s decomposition. A numerical example is given.
In this paper, a necessity measure optimization model of linear programming problems with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear fractional programming problems. Utilizing a special structure of the reduced problem, we propose a solution algorithm based on Bender’s decomposition. A numerical example is given.
Classification : 49M27, 90C05, 90C70
Keywords: fuzzy linear programming; oblique fuzzy vector; necessity measure; Bender’s decomposition
@article{KYB_2006_42_4_a3,
     author = {Inuiguchi, Masahiro},
     title = {A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors},
     journal = {Kybernetika},
     pages = {441--452},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2275346},
     zbl = {1249.90350},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a3/}
}
TY  - JOUR
AU  - Inuiguchi, Masahiro
TI  - A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors
JO  - Kybernetika
PY  - 2006
SP  - 441
EP  - 452
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a3/
LA  - en
ID  - KYB_2006_42_4_a3
ER  - 
%0 Journal Article
%A Inuiguchi, Masahiro
%T A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors
%J Kybernetika
%D 2006
%P 441-452
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a3/
%G en
%F KYB_2006_42_4_a3
Inuiguchi, Masahiro. A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors. Kybernetika, Tome 42 (2006) no. 4, pp. 441-452. http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a3/

[1] Inuiguchi M.: Necessity optimization in linear programming problems with interactive fuzzy numbers. In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii and M. Inuiguchi, eds.), Awaji Yumebutai ICC, 2004, pp. 9–14

[2] Inuiguchi M., Ramík J.: Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111 (2000), 1, 3–28 | MR | Zbl

[3] Inuiguchi M., Ramík, J., Tanino T.: Oblique fuzzy vectors and their use in possibilistic linear programming. Fuzzy Sets and Systems 137 (2003), 1, 123–150 | MR | Zbl

[4] Inuiguchi M., Sakawa M.: A possibilistic linear program is equivalent to a stochastic linear program in a special case. Fuzzy Sets and Systems 76 (1995), 309–318 | MR | Zbl

[5] Inuiguchi M., Tanino T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115 (2000), 1, 83–92 | MR | Zbl

[6] Inuiguchi M., Tanino T.: Possibilistic linear programming with fuzzy if-then rule coefficients. Fuzzy Optimization and Decision Making 1 (2002), 1, 65–91 | DOI | MR | Zbl

[7] Inuiguchi M., Tanino T.: Fuzzy linear programming with interactive uncertain parameters. Reliable Computing 10 (2004), 5, 357–367 | DOI | MR | Zbl

[8] Lasdon L. S.: Optimization Theory for Large Systems. Macmillan, New York 1970 | MR | Zbl

[9] Rommelfanger H., Kresztfalvi T.: Multicriteria fuzzy optimization based on Yager’s parameterized t-norm. Found. Computing and Decision Sciences 16 (1991), 2, 99–110 | MR

[10] Zimmermann H.-J.: Applications of fuzzy set theory to mathematical programming. Inform. Sci. 36 (1985), 1–2, 29–58 | DOI | MR | Zbl