Marginalization in multidimensional compositional models
Kybernetika, Tome 42 (2006) no. 4, pp. 405-422 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models.
Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models.
Classification : 60E99, 65C50, 68T37
Keywords: compositional models; marginalization; Bayesian network
@article{KYB_2006_42_4_a1,
     author = {B{\'\i}na, Vladislav and Jirou\v{s}ek, Radim},
     title = {Marginalization in multidimensional compositional models},
     journal = {Kybernetika},
     pages = {405--422},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2280521},
     zbl = {1249.65010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a1/}
}
TY  - JOUR
AU  - Bína, Vladislav
AU  - Jiroušek, Radim
TI  - Marginalization in multidimensional compositional models
JO  - Kybernetika
PY  - 2006
SP  - 405
EP  - 422
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a1/
LA  - en
ID  - KYB_2006_42_4_a1
ER  - 
%0 Journal Article
%A Bína, Vladislav
%A Jiroušek, Radim
%T Marginalization in multidimensional compositional models
%J Kybernetika
%D 2006
%P 405-422
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a1/
%G en
%F KYB_2006_42_4_a1
Bína, Vladislav; Jiroušek, Radim. Marginalization in multidimensional compositional models. Kybernetika, Tome 42 (2006) no. 4, pp. 405-422. http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a1/

[1] Badsberg J. H.: An Environment for Graphical Models. Ph.D. Thesis, Aalborg University 1995. http://www.math.aau.dk/~jhb/CoCo/documentation

[3] Jensen F. V.: Bayesian Networks and Decision Graphs. Springer Verlag, New York 2001 | MR

[4] Jiroušek R.: Marginalization in composed probabilistic models. In: Proc. 16th Conf. Uncertainty in Artificial Intelligence UAI’00 (C. Boutilier and M. Goldszmidt, eds.), Morgan Kaufmann, San Francisco 2000, pp. 301–308

[5] Jiroušek R.: Decomposition of multidimensional distributions represented by perfect sequences. Ann. Math. and Artificial Intelligence 35 (2002), 215–226 | DOI | MR | Zbl

[6] Jiroušek R.: What is the difference between Bayesian networks and compositional models? In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii, M. Inuiguchi, eds.), Awaji Yumebutai ICC 2004, pp. 191–196

[7] Lauritzen S. L.: Graphical Models. Clarendon Press, Oxford 1996 | MR | Zbl

[8] Shachter R. D.: Evaluating influence diagrams. Oper. Res. 34 (1986), 871–890 | DOI | MR

[9] Shachter R. D.: Probabilistic inference and influence diagrams. Oper. Res. 36 (1988), 589–604 | DOI | Zbl

[10] Shafer G.: Probabilistic Expert Systems. SIAM, Philadelphia 1996 | MR | Zbl