Keywords: probability logic; conditional; modus ponens; system p
@article{KYB_2006_42_4_a0,
author = {Pfeifer, Niki and Kleiter, Gernot D.},
title = {Inference in conditional probability logic},
journal = {Kybernetika},
pages = {391--404},
year = {2006},
volume = {42},
number = {4},
mrnumber = {2280520},
zbl = {1249.68262},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a0/}
}
Pfeifer, Niki; Kleiter, Gernot D. Inference in conditional probability logic. Kybernetika, Tome 42 (2006) no. 4, pp. 391-404. http://geodesic.mathdoc.fr/item/KYB_2006_42_4_a0/
[1] Adams E. W.: The Logic of Conditionals. Reidel, Dordrecht 1975 | MR | Zbl
[2] Biazzo V., Gilio A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. Internat. J. Approx. Reason. 24 (2000), 2-3, 251–272 | DOI | MR | Zbl
[3] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P. J. Appl. Non-Classical Logics 12 (2002), 2, 189–213 | DOI | MR | Zbl
[4] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence: Complexity and algorithms. Ann. Math. Artif. Intell. 45 (2005), 1-2, 35–81 | DOI | MR | Zbl
[5] Calabrese P. G., Goodman I. R.: Conditional event algebras and conditional probability logics. In: Proc. Internat. Workshop Probabilistic Methods in Expert Systems (R. Scozzafava, ed.), Societa Italiana di Statistica, Rome 1993, pp. 1–35
[6] Calabrese P. G.: Conditional events: Doing for logic and probability what fractions do for integer arithmetic. In: Proc.“The Notion of Event in Probabilistic Epistemology”, Dipartimento di Matematica Applicata “Bruno de Finetti”, Triest 1996, pp. 175–212
[7] Coletti G.: Coherent numerical and ordinal probabilistic assessment. IEEE Trans. Systems Man Cybernet. 24 (1994), 1747–1754 | DOI | MR
[8] Coletti G., Scozzafava, R., Vantaggi B.: Probabilistic reasoning as a general unifying tool. In: ECSQARU 2001 (S. Benferhat and P. Besnard, eds., Lecture Notes in Artificial Intelligence 2143), Springer–Verlag, Berlin 2001, pp. 120–131 | Zbl
[9] Coletti G., Scozzafava R.: Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht 2002 | MR | Zbl
[10] Finetti B. de: Theory of Probability (Vol. 1 and 2). Wiley, Chichester 1974
[11] Fagin R., Halpern J. Y., Megiddo N.: A logic for reasoning about probabilities. Inform. and Comput. 87 (1990), 78–128 | DOI | MR | Zbl
[12] Frisch A., Haddawy P.: Anytime deduction for probabilistic logic. Artif. Intell. 69 (1994), 93–122 | DOI | MR | Zbl
[13] Gilio A.: Probabilistic consistency of conditional probability bounds. In: Advances in Intelligent Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds., Lecture Notes in Computer Science 945), Springer–Verlag, Berlin 1995
[14] Gilio A.: Probabilistic reasoning under coherence in System P. Ann. Math. Artif. Intell. 34 (2002), 5–34 | DOI | MR | Zbl
[15] Hailperin T.: Sentential Probability Logic. Origins, Development, Current Status, and Technical Applications. Lehigh University Press, Bethlehem 1996 | MR | Zbl
[16] Kraus S., Lehmann, D., Magidor M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44 (1990), 167–207 | DOI | MR | Zbl
[17] Lukasiewicz T.: Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Internat. J. Approx. Reason. 21 (1999), 23–61 | DOI | MR | Zbl
[18] Lukasiewicz T.: Weak nonmonotonic probabilistic logics. Artif. Intell. 168 (2005), 119–161 | DOI | MR | Zbl
[19] Pfeifer N., Kleiter G. D.: Towards a mental probability logic. Psychologica Belgica 45 (2005), 1, 71–99. Updated version at: http://www.users.sbg.ac.at/~pfeifern/ | DOI
[20] Pfeifer N., Kleiter G. D.: Towards a probability logic based on statistical reasoning. In: Proc. 11th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 3, Editions E. D. K., Paris 2006, pp. 2308–2315
[21] Sobel J. H.: Modus Ponens and Modus Tollens for Conditional Probabilities,, Updating on Uncertain Evidence. Technical Report, University of Toronto 2005. http://www.scar.utoronto.ca/~sobel/
[22] Wagner C.: Modus Tollens probabilized. British J. Philos. Sci. 55 (2004), 747–753 | DOI | MR | Zbl