Keywords: fuzzy measure; t-norm; T-conorm; subadditivity; belief
@article{KYB_2006_42_3_a8,
author = {Struk, Peter and Stup\v{n}anov\'a, Andrea},
title = {$S$-measures, $T$-measures and distinguished classes of fuzzy measures},
journal = {Kybernetika},
pages = {367--378},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253395},
zbl = {1249.28031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/}
}
Struk, Peter; Stupňanová, Andrea. $S$-measures, $T$-measures and distinguished classes of fuzzy measures. Kybernetika, Tome 42 (2006) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/
[1] Bronevich A. G.: On the closure of families of fuzzy measures under eventwise aggregations. Fuzzy Sets and Systems 153 (2005), 1, 45–70 | MR | Zbl
[2] Chateauneuf A.: Decomposable capacities, distorted probabilities and concave capacities. Math. Soc. Sci. 31 (1996), 19–37 | DOI | MR | Zbl
[3] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980 | MR | Zbl
[4] Klement E. P., Mesiar R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000 | MR | Zbl
[5] Klement E. P., Mesiar R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 701–717 | DOI | MR | Zbl
[6] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 | MR | Zbl
[7] Mesiar R.: Generalizations of $k$-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999), 423–428 | DOI | MR | Zbl
[8] Mesiar R.: Triangular norms – an overview. In: Computational Inteligence in Theory and Practice (B. Reusch, K.-H. Temme, eds.), Physica–Verlag, Heidelberg 2001, pp. 35–54 | MR | Zbl
[9] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.), Springer, New York 1999 | DOI | MR | Zbl
[10] Pap E.: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl
[11] Pap E.: Pseudo-additive measures and their applications. In: Handbook of Measure Theory, Volume II (E. Pap, ed.), Elsevier, North–Holland, Amsterdam 2002, pp. 1403–1465 | MR | Zbl
[12] Smutná D.: On a peculiar t-norm. Busefal 75 (1998), 60–67
[13] Sugeno M.: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo 1974
[14] Valášková Ĺ., Struk P.: Preservation of Distinguished Fuzzy Measure Classes by Distortion. In: MDAI 2004, Barcelona (V. Torra, Y. Narukawa, eds., Lecture Notes in Artificial Intelligence 3131), Springer–Verlag, Berlin 2004, pp. 175–182 | Zbl
[15] Wang Z., Klir G. J.: Fuzzy Measures Theory. Plenum Press, New York 1992
[16] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms. J. Math. Anal. Appl. 101 (1984), 114–138 | DOI | MR | Zbl
[17] Zadeh L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 | DOI | MR