$S$-measures, $T$-measures and distinguished classes of fuzzy measures
Kybernetika, Tome 42 (2006) no. 3, pp. 367-378 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.
$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.
Classification : 03E72, 28E10
Keywords: fuzzy measure; t-norm; T-conorm; subadditivity; belief
@article{KYB_2006_42_3_a8,
     author = {Struk, Peter and Stup\v{n}anov\'a, Andrea},
     title = {$S$-measures, $T$-measures and distinguished classes of fuzzy measures},
     journal = {Kybernetika},
     pages = {367--378},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2253395},
     zbl = {1249.28031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/}
}
TY  - JOUR
AU  - Struk, Peter
AU  - Stupňanová, Andrea
TI  - $S$-measures, $T$-measures and distinguished classes of fuzzy measures
JO  - Kybernetika
PY  - 2006
SP  - 367
EP  - 378
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/
LA  - en
ID  - KYB_2006_42_3_a8
ER  - 
%0 Journal Article
%A Struk, Peter
%A Stupňanová, Andrea
%T $S$-measures, $T$-measures and distinguished classes of fuzzy measures
%J Kybernetika
%D 2006
%P 367-378
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/
%G en
%F KYB_2006_42_3_a8
Struk, Peter; Stupňanová, Andrea. $S$-measures, $T$-measures and distinguished classes of fuzzy measures. Kybernetika, Tome 42 (2006) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a8/

[1] Bronevich A. G.: On the closure of families of fuzzy measures under eventwise aggregations. Fuzzy Sets and Systems 153 (2005), 1, 45–70 | MR | Zbl

[2] Chateauneuf A.: Decomposable capacities, distorted probabilities and concave capacities. Math. Soc. Sci. 31 (1996), 19–37 | DOI | MR | Zbl

[3] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980 | MR | Zbl

[4] Klement E. P., Mesiar R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000 | MR | Zbl

[5] Klement E. P., Mesiar R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 701–717 | DOI | MR | Zbl

[6] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 | MR | Zbl

[7] Mesiar R.: Generalizations of $k$-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999), 423–428 | DOI | MR | Zbl

[8] Mesiar R.: Triangular norms – an overview. In: Computational Inteligence in Theory and Practice (B. Reusch, K.-H. Temme, eds.), Physica–Verlag, Heidelberg 2001, pp. 35–54 | MR | Zbl

[9] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.), Springer, New York 1999 | DOI | MR | Zbl

[10] Pap E.: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl

[11] Pap E.: Pseudo-additive measures and their applications. In: Handbook of Measure Theory, Volume II (E. Pap, ed.), Elsevier, North–Holland, Amsterdam 2002, pp. 1403–1465 | MR | Zbl

[12] Smutná D.: On a peculiar t-norm. Busefal 75 (1998), 60–67

[13] Sugeno M.: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo 1974

[14] Valášková Ĺ., Struk P.: Preservation of Distinguished Fuzzy Measure Classes by Distortion. In: MDAI 2004, Barcelona (V. Torra, Y. Narukawa, eds., Lecture Notes in Artificial Intelligence 3131), Springer–Verlag, Berlin 2004, pp. 175–182 | Zbl

[15] Wang Z., Klir G. J.: Fuzzy Measures Theory. Plenum Press, New York 1992

[16] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms. J. Math. Anal. Appl. 101 (1984), 114–138 | DOI | MR | Zbl

[17] Zadeh L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 | DOI | MR