Keywords: t-norm; T-conorm; implication operator; QL-implication; D-implication
@article{KYB_2006_42_3_a7,
author = {Mas, Margarita and Monserrat, Miquel and Torrens, Joan},
title = {QL-implications versus {D-implications}},
journal = {Kybernetika},
pages = {351--366},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253394},
zbl = {1249.03026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a7/}
}
Mas, Margarita; Monserrat, Miquel; Torrens, Joan. QL-implications versus D-implications. Kybernetika, Tome 42 (2006) no. 3, pp. 351-366. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a7/
[1] Alsina C., Trillas E.: On the functional equation $S_1(x,y)=S_2(x,T(N(x),y))$. In: Functional Equations, Results and Advances (Z. Daróczy and Z. Páles, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 323–334 | MR | Zbl
[2] Bustince H., Burillo, P., Soria F.: Automorphisms, negations and implication operators. Fuzzy Sets and Systems 134 (2003), 209–229 | DOI | MR
[3] Baets B. De: Model implicators and their characterization. In: Proc. First ICSC International Symposium on Fuzzy Logic (N. Steele, ed.), ICSC Academic Press, Zürich 1995, pp. A42–A49
[4] Fodor J. C.: On fuzzy implication operators. Fuzzy Sets and Systems 42 (1991), 293–300 | DOI | MR | Zbl
[5] Fodor J. C.: Contrapositive symmetry on fuzzy implications. Fuzzy Sets and Systems 69 (1995), 141–156 | DOI | MR
[6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x + y - F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl
[7] Jenei S.: New family of triangular norms via contrapositive symmetrization of residuated implications. Fuzzy Sets and Systems 110 (2000), 157–174 | MR | Zbl
[8] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[9] Mas M., Monserrat, M., Torrens J.: QL-Implications on a finite chain. In: Proc. Eusflat-2003, Zittau 2003, pp. 281–284
[10] Mas M., Monserrat, M., Torrens J.: On two types of discrete implications. Internat. J. Approx. Reason. 40 (2005), 262–279 | DOI | MR | Zbl
[11] Nachtegael M., Kerre E.: Classical and fuzzy approaches towards mathematical morphology. In: Fuzzy Techniques in Image Processing (E. Kerre and M. Nachtegael, eds., Studies in Fuzziness and Soft Computing, Vol. 52), Physica–Verlag, Heidelberg 2000, pp. 3–57
[12] Pei D.: $R_0$ implication: characteristics and applications. Fuzzy Sets and Systems 131 (2002), 297–302 | MR | Zbl
[13] Trillas E., Campo, C. del, Cubillo S.: When QM-operators are implication functions and conditional fuzzy relations. Internat. J. Intelligent Systems 15 (2000), 647–655 | DOI | Zbl
[14] Trillas E., Alsina C., Renedo, E., Pradera A.: On contra-symmetry and MPT conditionality in fuzzy logic. Internat. J. Intelligent Systems 20 (2005), 313–326 | DOI | Zbl
[15] Yager R. R.: Uninorms in fuzzy systems modelling. Fuzzy Sets and Systems 122 (2001), 167–175 | DOI | MR