On the dominance relation between ordinal sums of conjunctors
Kybernetika, Tome 42 (2006) no. 3, pp. 337-350 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
Classification : 26B99, 39B62, 60E05
Keywords: conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm
@article{KYB_2006_42_3_a6,
     author = {Saminger, Susanne and De Baets, Bernard and De Meyer, Hans},
     title = {On the dominance relation between ordinal sums of conjunctors},
     journal = {Kybernetika},
     pages = {337--350},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2253393},
     zbl = {1249.26025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/}
}
TY  - JOUR
AU  - Saminger, Susanne
AU  - De Baets, Bernard
AU  - De Meyer, Hans
TI  - On the dominance relation between ordinal sums of conjunctors
JO  - Kybernetika
PY  - 2006
SP  - 337
EP  - 350
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/
LA  - en
ID  - KYB_2006_42_3_a6
ER  - 
%0 Journal Article
%A Saminger, Susanne
%A De Baets, Bernard
%A De Meyer, Hans
%T On the dominance relation between ordinal sums of conjunctors
%J Kybernetika
%D 2006
%P 337-350
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/
%G en
%F KYB_2006_42_3_a6
Saminger, Susanne; De Baets, Bernard; De Meyer, Hans. On the dominance relation between ordinal sums of conjunctors. Kybernetika, Tome 42 (2006) no. 3, pp. 337-350. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/

[1] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York 1966 | MR

[2] Birkhoff G.: Lattice Theory. American Mathematical Society, Providence, Rhode Island 1973 | Zbl

[3] Bodenhofer U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137 (2003), 1, 113–136 | DOI | MR | Zbl

[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl

[5] Clifford A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631–646 | DOI | MR

[6] Baets B. De, Janssens, S., Meyer H. De: Meta-theorems on inequalities for scalar fuzzy set cardinalities. Fuzzy Sets and Systems 157 (2006), 1463–1476 | MR | Zbl

[7] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | DOI | MR | Zbl

[8] Baets B. De, Mesiar R.: Ordinal sums of aggregation operators. In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 | Zbl

[9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems, to appear

[10] Dubois D., Prade H.: New results about properties and semantics of fuzzy set-theoretic operators. In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 | MR | Zbl

[11] Durante F., Sempi C.: Semicopulæ. Kybernetika 41 (2005), 3, 315–328 | MR

[12] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl

[13] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets and Systems 148 (2004), 263–278 | MR | Zbl

[14] Jenei S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets and Systems 126 (2002), 199–205 | MR | Zbl

[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[16] Klement E. P., Mesiar, R., Pap E.: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71–82 | DOI | MR | Zbl

[17] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR

[18] Mayor G., Torrens J.: On a family of t-norms. Fuzzy Sets and Systems 41 (1991), 161–166 | DOI | MR | Zbl

[19] Mesiar R., Saminger S.: Domination of ordered weighted averaging operators over t-norms. Soft Computing 8 (2004), 562–570 | DOI | Zbl

[20] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl

[21] Saminger S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1406–1416 | MR | Zbl

[22] Saminger S.: Aggregation in Evaluation of Computer-Assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 | Zbl

[23] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 | DOI | MR | Zbl

[24] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl

[25] Tardiff R. M.: Topologies for probabilistic metric spaces. Pacific J. Math. 65 (1976), 233–251 | DOI | MR | Zbl