Keywords: conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm
@article{KYB_2006_42_3_a6,
author = {Saminger, Susanne and De Baets, Bernard and De Meyer, Hans},
title = {On the dominance relation between ordinal sums of conjunctors},
journal = {Kybernetika},
pages = {337--350},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253393},
zbl = {1249.26025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/}
}
Saminger, Susanne; De Baets, Bernard; De Meyer, Hans. On the dominance relation between ordinal sums of conjunctors. Kybernetika, Tome 42 (2006) no. 3, pp. 337-350. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a6/
[1] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York 1966 | MR
[2] Birkhoff G.: Lattice Theory. American Mathematical Society, Providence, Rhode Island 1973 | Zbl
[3] Bodenhofer U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137 (2003), 1, 113–136 | DOI | MR | Zbl
[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl
[5] Clifford A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631–646 | DOI | MR
[6] Baets B. De, Janssens, S., Meyer H. De: Meta-theorems on inequalities for scalar fuzzy set cardinalities. Fuzzy Sets and Systems 157 (2006), 1463–1476 | MR | Zbl
[7] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | DOI | MR | Zbl
[8] Baets B. De, Mesiar R.: Ordinal sums of aggregation operators. In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 | Zbl
[9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems, to appear
[10] Dubois D., Prade H.: New results about properties and semantics of fuzzy set-theoretic operators. In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 | MR | Zbl
[11] Durante F., Sempi C.: Semicopulæ. Kybernetika 41 (2005), 3, 315–328 | MR
[12] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl
[13] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets and Systems 148 (2004), 263–278 | MR | Zbl
[14] Jenei S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets and Systems 126 (2002), 199–205 | MR | Zbl
[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[16] Klement E. P., Mesiar, R., Pap E.: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71–82 | DOI | MR | Zbl
[17] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR
[18] Mayor G., Torrens J.: On a family of t-norms. Fuzzy Sets and Systems 41 (1991), 161–166 | DOI | MR | Zbl
[19] Mesiar R., Saminger S.: Domination of ordered weighted averaging operators over t-norms. Soft Computing 8 (2004), 562–570 | DOI | Zbl
[20] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl
[21] Saminger S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1406–1416 | MR | Zbl
[22] Saminger S.: Aggregation in Evaluation of Computer-Assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 | Zbl
[23] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 | DOI | MR | Zbl
[24] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl
[25] Tardiff R. M.: Topologies for probabilistic metric spaces. Pacific J. Math. 65 (1976), 233–251 | DOI | MR | Zbl