Keywords: $t$-norm; $t$-conorm; uninorm; implication operator; S-implication; R-implication; distributivity
@article{KYB_2006_42_3_a5,
author = {Ruiz-Aguilera, Daniel and Torrens, Joan},
title = {Distributivity of strong implications over conjunctive and disjunctive uninorms},
journal = {Kybernetika},
pages = {319--336},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253392},
zbl = {1249.03030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a5/}
}
Ruiz-Aguilera, Daniel; Torrens, Joan. Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika, Tome 42 (2006) no. 3, pp. 319-336. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a5/
[1] Balasubramaniam J., Rao C. J. M.: On the distributivity of implication operators over T and S norms. IEEE Trans. Fuzzy Systems 12 (2004), 194–198 | DOI
[2] Combs W. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Systems 6 (1998), 1–11 | DOI
[3] Combs W. E., Andrews J. E.: Author’s reply. IEEE Trans. Fuzzy Systems 7 (1999), 371 | DOI
[4] Combs W. E., Andrews J. E.: Author’s reply. IEEE Trans. Fuzzy Systems 7 (1999), 478–479 | DOI
[5] Baets B. De, Fodor J. C.: Residual operators of uninorms. Soft Computing 3 (1999), 89–100 | DOI
[6] Dick S., Kandel A.: Comments on “combinatorial rule explosion eliminated by a fuzzy rule configuration”. IEEE Trans. Fuzzy Systems 7 (1999), 475–477 | DOI
[7] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 4, 411–427 | DOI | MR | Zbl
[8] González M., Ruiz, D., Torrens J.: Algebraic properties of fuzzy morphological operators based on uninorms. In: Artificial Intelligence Research and Development (I. Aguiló, L. Valverde, and M. Escrig, eds.), IOS Press 2003, pp. 27–38
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[10] Martín J., Mayor, G., Torrens J.: On locally internal monotonic operations. Fuzzy Sets and Systems 137 (2003), 1, 27–42 | DOI | MR | Zbl
[11] Mas M., Mayor, G., Torrens J.: The distributivity condition for uninorms and $t$-operators. Fuzzy Sets and Systems 128 (2002), 209–225 | MR | Zbl
[12] Mas M., Mayor, G., Torrens J.: Corrigendum to “The distributivity condition for uninorms and $t$-operators”. Fuzzy Sets and Systems 128 (2002), 209–225, Fuzzy Sets and Systems 153 (2005), 297–299 | MR
[13] Mendel J. M., Liang Q.: Comments on “combinatorial rule explosion eliminated by a fuzzy rule configuration”. IEEE Trans. Fuzzy Systems 7 (1999), 369–371 | DOI
[14] Ruiz D., Torrens J.: Distributive idempotent uninorms. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 11 (2003), 413–428 | DOI | MR | Zbl
[15] Ruiz D., Torrens J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21–38 | MR
[16] Ruiz D., Torrens J.: Distributivity and conditional distributivity of a uninorm and a continuous $t$-conorm. IEEE Trans. Fuzzy Systems 14 (2006), 180–190 | DOI
[17] Ruiz D., Torrens J.: Distributive residual implications from uninorms. In: Proc. EUSFLAT-2005, Barcelona 2005, pp. 369–374
[18] Trillas E., Alsina C.: On the law $[p\wedge q \rightarrow r ] \equiv [(p \rightarrow r) \vee (q \rightarrow r)]$ in fuzzy logic. IEEE Trans. Fuzzy Systems 10 (2002), 84–88