A contour view on uninorm properties
Kybernetika, Tome 42 (2006) no. 3, pp. 303-318 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
Classification : 03B52, 03E72, 06F05, 26B40
Keywords: uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property
@article{KYB_2006_42_3_a4,
     author = {Maes, Koen C. and De Baets, Bernard},
     title = {A contour view on uninorm properties},
     journal = {Kybernetika},
     pages = {303--318},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2253391},
     zbl = {1249.26022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/}
}
TY  - JOUR
AU  - Maes, Koen C.
AU  - De Baets, Bernard
TI  - A contour view on uninorm properties
JO  - Kybernetika
PY  - 2006
SP  - 303
EP  - 318
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/
LA  - en
ID  - KYB_2006_42_3_a4
ER  - 
%0 Journal Article
%A Maes, Koen C.
%A De Baets, Bernard
%T A contour view on uninorm properties
%J Kybernetika
%D 2006
%P 303-318
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/
%G en
%F KYB_2006_42_3_a4
Maes, Koen C.; De Baets, Bernard. A contour view on uninorm properties. Kybernetika, Tome 42 (2006) no. 3, pp. 303-318. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/

[1] Birkhoff G.: Lattice Theory. Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967 | MR | Zbl

[2] Baets B. De: Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997), 229–240 | MR | Zbl

[3] Baets B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631–642 | DOI | Zbl

[4] Baets B. De, Fodor J.: Residual operators of uninorms. Soft Computing 3 (1999), 89–100 | DOI

[5] Baets B. De, Fodor J.: van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets and Systems 104 (1999), 133–136 | MR | Zbl

[6] Baets B. De, Mesiar R.: Metrics and T-equalities. J. Math. Anal. Appl. 267 (2002), 331–347 | MR

[7] Dombi J.: Basic concepts for the theory of evaluation: the aggregative operator. European J. Oper. Res. 10 (1982), 282–293 | DOI | MR

[8] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl

[9] Fodor J., Yager, R., Rybalov A.: Structure of uninorms. Internat. J. Uncertain Fuzz. 5 (1997), 411–427 | DOI | MR | Zbl

[10] Golan J.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Addison–Wesley Longman Ltd., Essex 1992 | MR | Zbl

[11] Jenei S.: Geometry of left-continuous t-norms with strong induced negations. Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16 | MR

[12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 | DOI | MR | Zbl

[13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 | DOI | MR | Zbl

[14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 | MR | Zbl

[15] Jenei S.: How to construct left-continuous triangular norms – state of the art. Fuzzy Sets and Systems 143 (2004), 27–45 | MR | Zbl

[16] Jenei S.: On the determination of left-continuous t-norms and continuous Archimedean t-norms on some segments. Aequationes Math. 70 (2005), 177–188 | DOI | MR | Zbl

[17] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR | Zbl

[18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[19] Klement E. P., Mesiar, R., Pap E.: Different types of continuity of triangular norms revisited. New Mathematics and Natural Computation 1 (2005), 195–211 | DOI | MR | Zbl

[20] Maes K. C., Baets B. De: Orthosymmetrical monotone functions. B. Belg. Math. Soc.-Sim., to appear | MR | Zbl

[21] Ruiz D., Torrens J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21–38 | MR

[22] Schweizer B., Sklar A.: Probabilistic Metric Spaces. Elsevier Science, New York 1983 | MR | Zbl

[23] Yager R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111–120 | DOI | MR | Zbl