Keywords: uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property
@article{KYB_2006_42_3_a4,
author = {Maes, Koen C. and De Baets, Bernard},
title = {A contour view on uninorm properties},
journal = {Kybernetika},
pages = {303--318},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253391},
zbl = {1249.26022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/}
}
Maes, Koen C.; De Baets, Bernard. A contour view on uninorm properties. Kybernetika, Tome 42 (2006) no. 3, pp. 303-318. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a4/
[1] Birkhoff G.: Lattice Theory. Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967 | MR | Zbl
[2] Baets B. De: Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997), 229–240 | MR | Zbl
[3] Baets B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631–642 | DOI | Zbl
[4] Baets B. De, Fodor J.: Residual operators of uninorms. Soft Computing 3 (1999), 89–100 | DOI
[5] Baets B. De, Fodor J.: van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets and Systems 104 (1999), 133–136 | MR | Zbl
[6] Baets B. De, Mesiar R.: Metrics and T-equalities. J. Math. Anal. Appl. 267 (2002), 331–347 | MR
[7] Dombi J.: Basic concepts for the theory of evaluation: the aggregative operator. European J. Oper. Res. 10 (1982), 282–293 | DOI | MR
[8] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl
[9] Fodor J., Yager, R., Rybalov A.: Structure of uninorms. Internat. J. Uncertain Fuzz. 5 (1997), 411–427 | DOI | MR | Zbl
[10] Golan J.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Addison–Wesley Longman Ltd., Essex 1992 | MR | Zbl
[11] Jenei S.: Geometry of left-continuous t-norms with strong induced negations. Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16 | MR
[12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 | DOI | MR | Zbl
[13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 | DOI | MR | Zbl
[14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 | MR | Zbl
[15] Jenei S.: How to construct left-continuous triangular norms – state of the art. Fuzzy Sets and Systems 143 (2004), 27–45 | MR | Zbl
[16] Jenei S.: On the determination of left-continuous t-norms and continuous Archimedean t-norms on some segments. Aequationes Math. 70 (2005), 177–188 | DOI | MR | Zbl
[17] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR | Zbl
[18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[19] Klement E. P., Mesiar, R., Pap E.: Different types of continuity of triangular norms revisited. New Mathematics and Natural Computation 1 (2005), 195–211 | DOI | MR | Zbl
[20] Maes K. C., Baets B. De: Orthosymmetrical monotone functions. B. Belg. Math. Soc.-Sim., to appear | MR | Zbl
[21] Ruiz D., Torrens J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21–38 | MR
[22] Schweizer B., Sklar A.: Probabilistic Metric Spaces. Elsevier Science, New York 1983 | MR | Zbl
[23] Yager R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111–120 | DOI | MR | Zbl