Keywords: semicopula; quasi-copula; Lipschitz condition; aggregation operator
@article{KYB_2006_42_3_a3,
author = {Durante, Fabrizio and Quesada-Molina, Jos\'e and Sempi, Carlo},
title = {Semicopulas: characterizations and applicability},
journal = {Kybernetika},
pages = {287--302},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253390},
zbl = {1249.60016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/}
}
Durante, Fabrizio; Quesada-Molina, José; Sempi, Carlo. Semicopulas: characterizations and applicability. Kybernetika, Tome 42 (2006) no. 3, pp. 287-302. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/
[1] Alsina C., Frank M. J., Schweizer B.: Problems on associative functions. Aequationes Math. 66 (2003), 128–140 | DOI | MR | Zbl
[2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl
[3] Axler S., Bourdon, P., Ramey W.: Harmonic Function Theory. (Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001 | MR | Zbl
[4] Baets B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340 | MR | Zbl
[5] Baets B. De, Meyer H. De: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 249–270 | MR | Zbl
[6] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cycle evaluation of transitivity of reciprocal relations. Soc. Choice Welfare. To appear
[7] Schuymer B. De, Meyer, H. De, Baets B. De: On some forms of cycle-transitivity and their relation to commutative copulas. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182
[8] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313–339 | DOI | MR | Zbl
[9] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 | MR | Zbl
[10] Denneberg D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994 | MR | Zbl
[11] Durante F.: What is a semicopula? In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56
[12] Durante F.: A new class of symmetric bivariate copulas. Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005 | MR
[13] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing 10 (2006), 490–494 | DOI | Zbl
[14] Durante F., Quesada-Molina J. J., Sempi C.: A generalization of the Archimedean class of bivariate copulas. Ann. Inst. Statist. Math. (2006), to appear | MR
[15] Durante F., Sempi C.: Semicopulæ. Kybernetika 41 (2005), 315–328 | MR
[16] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR
[17] Ricci R. Ghiselli, Mesiar R.: $k$-Lipschitz strict triangular norms. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312
[18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[19] Kolmogorov A. N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950 | MR | Zbl
[20] Mesiarová A.: $k$-Lipschitz aggregation operators. In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92
[21] Mesiarová A.: Triangular norms and $k$-Lipschitz property. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926
[22] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 | DOI | MR | Zbl
[23] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl
[24] Nelsen R. B.: Copulas and quasi-copulas: an introduction to their properties and applications. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 | MR | Zbl
[25] Rodríguez-Lallena J. A., Úbeda-Flores M.: A new class of bivariate copulas. Statist. Probab. Lett. 66 (2004), 315–325 | DOI | MR | Zbl
[26] Scarsini M.: Copulæ of capacities on product spaces. In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318 | MR
[27] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005 | MR | Zbl
[28] Stromberg K. R.: An Introduction to Classical Real Analysis. Chapman & Hall, London 1981 | MR | Zbl