Semicopulas: characterizations and applicability
Kybernetika, Tome 42 (2006) no. 3, pp. 287-302 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
Classification : 03E72, 26B35, 60E05, 60E15
Keywords: semicopula; quasi-copula; Lipschitz condition; aggregation operator
@article{KYB_2006_42_3_a3,
     author = {Durante, Fabrizio and Quesada-Molina, Jos\'e and Sempi, Carlo},
     title = {Semicopulas: characterizations and applicability},
     journal = {Kybernetika},
     pages = {287--302},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2253390},
     zbl = {1249.60016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/}
}
TY  - JOUR
AU  - Durante, Fabrizio
AU  - Quesada-Molina, José
AU  - Sempi, Carlo
TI  - Semicopulas: characterizations and applicability
JO  - Kybernetika
PY  - 2006
SP  - 287
EP  - 302
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/
LA  - en
ID  - KYB_2006_42_3_a3
ER  - 
%0 Journal Article
%A Durante, Fabrizio
%A Quesada-Molina, José
%A Sempi, Carlo
%T Semicopulas: characterizations and applicability
%J Kybernetika
%D 2006
%P 287-302
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/
%G en
%F KYB_2006_42_3_a3
Durante, Fabrizio; Quesada-Molina, José; Sempi, Carlo. Semicopulas: characterizations and applicability. Kybernetika, Tome 42 (2006) no. 3, pp. 287-302. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a3/

[1] Alsina C., Frank M. J., Schweizer B.: Problems on associative functions. Aequationes Math. 66 (2003), 128–140 | DOI | MR | Zbl

[2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl

[3] Axler S., Bourdon, P., Ramey W.: Harmonic Function Theory. (Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001 | MR | Zbl

[4] Baets B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340 | MR | Zbl

[5] Baets B. De, Meyer H. De: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 249–270 | MR | Zbl

[6] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cycle evaluation of transitivity of reciprocal relations. Soc. Choice Welfare. To appear

[7] Schuymer B. De, Meyer, H. De, Baets B. De: On some forms of cycle-transitivity and their relation to commutative copulas. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182

[8] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313–339 | DOI | MR | Zbl

[9] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 | MR | Zbl

[10] Denneberg D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994 | MR | Zbl

[11] Durante F.: What is a semicopula? In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56

[12] Durante F.: A new class of symmetric bivariate copulas. Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005 | MR

[13] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing 10 (2006), 490–494 | DOI | Zbl

[14] Durante F., Quesada-Molina J. J., Sempi C.: A generalization of the Archimedean class of bivariate copulas. Ann. Inst. Statist. Math. (2006), to appear | MR

[15] Durante F., Sempi C.: Semicopulæ. Kybernetika 41 (2005), 315–328 | MR

[16] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR

[17] Ricci R. Ghiselli, Mesiar R.: $k$-Lipschitz strict triangular norms. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312

[18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[19] Kolmogorov A. N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950 | MR | Zbl

[20] Mesiarová A.: $k$-Lipschitz aggregation operators. In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92

[21] Mesiarová A.: Triangular norms and $k$-Lipschitz property. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926

[22] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 | DOI | MR | Zbl

[23] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl

[24] Nelsen R. B.: Copulas and quasi-copulas: an introduction to their properties and applications. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 | MR | Zbl

[25] Rodríguez-Lallena J. A., Úbeda-Flores M.: A new class of bivariate copulas. Statist. Probab. Lett. 66 (2004), 315–325 | DOI | MR | Zbl

[26] Scarsini M.: Copulæ of capacities on product spaces. In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318 | MR

[27] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005 | MR | Zbl

[28] Stromberg K. R.: An Introduction to Classical Real Analysis. Chapman & Hall, London 1981 | MR | Zbl